# Find minimum in an array without using Relational Operators

Given an array A[] of non-negative integers, find the minimum in the array without using Relational Operators.

Examples:

```Input : A[] = {2, 3, 1, 4, 5}
Output : 1

Input : A[] = {23, 17, 93}
Output : 17
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

We use repeated subtraction to find out the minimum. To find minimum between two numbers, we take a variable counter initialized to zero. We keep decreasing the both the value till any one of them becomes equal to zero, increasing the counter simultaneously. The minimum value reaches zero first and the counter has increased to be the minimum of both of them. We first find the minimum of first two numbers and then compare it with the rest elements of the array one by one to find the overall minimum.

Below is the implementation of the above idea.

## C++

 `// C++ program to find minimum in an  ` `// array without using Relational Operators ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find minimum between two non-negative ` `// numbers without using relational operator. ` `int` `minimum(``int` `x, ``int` `y) ` `{ ` `    ``int` `c = 0; ` ` `  `    ``// Continues till any element becomes zero. ` `    ``while` `(x && y)  ` `    ``{ ` `        ``x--; ` `        ``y--; ` `        ``c++; ` `    ``} ` `    ``return` `c; ` `} ` ` `  `// Function to find minimum in an array. ` `int` `arrayMinimum(``int` `A[], ``int` `N) ` `{ ` `    ``// calculating minimum of first two numbers ` `    ``int` `mn = A; ` ` `  `    ``// Iterating through each of the member of ` `    ``// the array to calculate the minimum ` `    ``for` `(``int` `i = N-1; i; i--)  ` ` `  `        ``// Finding the minimum between current  ` `        ``// minimum and current value. ` `        ``mn = minimum(mn, A[i]);     ` ` `  `    ``return` `mn; ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `A[] = { 2, 3, 1, 4 }; ` `    ``int` `N = ``sizeof``(A) / ``sizeof``(A); ` `    ``cout << arrayMinimum(A, N); ` `    ``return` `0; ` `} `

## Java

 `// Java program to find minimum in an  ` `// array without using Relational Operators ` ` `  `class` `GFG { ` `     `  `// Function to find minimum between two ` `// non-negative numbers without  ` `// using relational operator. ` `static` `int` `minimum(``int` `x, ``int` `y) ` `{ ` `    ``int` `c = ``0``; ` ` `  `    ``// Continues till any element becomes zero. ` `    ``while` `(x > ``0` `&& y > ``0``) { ` `    ``x--; ` `    ``y--; ` `    ``c++; ` `    ``} ` `    ``return` `c; ` `} ` ` `  `// Function to find minimum in an array. ` `static` `int` `arrayMinimum(``int` `A[], ``int` `N) { ` `     `  `    ``// calculating minimum of first two numbers ` `    ``int` `mn = A[``0``]; ` ` `  `    ``// Iterating through each of the member of ` `    ``// the array to calculate the minimum ` `    ``for` `(``int` `i = N - ``1``; i > ``0``; i--) ` ` `  `    ``// Finding the minimum between current ` `    ``// minimum and current value. ` `    ``mn = minimum(mn, A[i]); ` ` `  `    ``return` `mn; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main(String arg[])  ` `{ ` `    ``int` `A[] = {``2``, ``3``, ``1``, ``4``}; ` `    ``int` `N = A.length; ` `    ``System.out.print(arrayMinimum(A, N)); ` `} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Function to find minimum ` `# between two non-negative ` `# numbers without using ` `# relational operator. ` ` `  `def` `minimum(x,y): ` `    ``c ``=` `0` `  `  `    ``# Continues till any ` `    ``# element becomes zero. ` `    ``while` `(x>``0` `and` `y>``0``):  ` `     `  `        ``x``=``x``-``1` `        ``y``=``y``-``1` `        ``c``=``c``+``1` `     `  `    ``return` `c ` `  `  `# Function to find ` `# minimum in an array. ` `def` `arrayMinimum(A,N): ` ` `  `    ``# calculating minimum ` `    ``# of first two numbers ` `    ``mn ``=` `A[``0``] ` `  `  `    ``# Iterating through each ` `    ``# of the member of ` `    ``# the array to calculate ` `    ``# the minimum ` `    ``for` `i ``in` `range``(N``-``1``,``0``,``-``1``):  ` `  `  `        ``# Finding the minimum ` `        ``# between current  ` `        ``# minimum and current value. ` `        ``mn ``=` `minimum(mn, A[i])     ` `  `  `    ``return` `mn ` `     `  `# Driver code ` ` `  `A ``=` `[ ``2``, ``3``, ``1``, ``4``] ` `N ``=``len``(A) ` ` `  `print``(arrayMinimum(A, N)) ` ` `  `# This code is contributed ` `# by Anant Agarwal. `

## C#

 `// C# program to find minimum in an  ` `// array without using Relational Operators ` `using` `System; ` ` `  `class` `GFG  ` `{ ` `     `  `// Function to find minimum between two ` `// non-negative numbers without  ` `// using relational operator. ` `static` `int` `minimum(``int` `x, ``int` `y) ` `{ ` `    ``int` `c = 0; ` ` `  `    ``// Continues till any  ` `    ``// element becomes zero  ` `    ``while` `(x > 0 && y > 0) ` `    ``{ ` `        ``x--; ` `        ``y--; ` `        ``c++; ` `    ``} ` `    ``return` `c; ` `} ` ` `  `// Function to find minimum in an array. ` `static` `int` `arrayMinimum(``int` `[]A, ``int` `N)  ` `{ ` `     `  `    ``// calculating minimum of  ` `    ``// first two numbers ` `    ``int` `mn = A; ` ` `  `    ``// Iterating through each of the ` `    ``// member of the array to  ` `    ``// calculate the minimum ` `    ``for` `(``int` `i = N - 1; i > 0; i--) ` ` `  `        ``// Finding the minimum between current ` `        ``// minimum and current value. ` `        ``mn = minimum(mn, A[i]); ` ` `  `    ``return` `mn; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main()  ` `{ ` `    ``int` `[]A = {2, 3, 1, 4}; ` `    ``int` `N = A.Length; ` `    ``Console.WriteLine(arrayMinimum(A, N)); ` `} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```1
```

The time complexity of the code will be O(N*max) where max is the maximum of the array elements.

Limitations : This will only work if the array contains all non negative integers.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : vt_m

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.