GeeksforGeeks App
Open App
Browser
Continue

# Find Maximum XOR value of a sub-array of size k

Given an array of integers, the task is to find maximum XOR value of a subarray of size K.

Examples :

```Input  : arr[] = {2, 5, 8 ,1 , 1 ,3} k = 3
Output : 15
Explanation : All subarrays of size k (=3) and
their XOR values are:
{2, 5, 8} => XOR value =  15
{5, 8, 1} => XOR value =  12
{8, 1, 1} => XOR value =  8
{1, 1, 3} => XOR value =  3
Maximum of all XOR values = 15

Input  : arr[] = {1, 2, 4, 5, 6}
Output : 6```

A simple solution is to consider all subarrays of size k one by one and compute XOR value. Finally return maximum of all XOR values. This solution takes O(n*k) time.

An efficient solution takes O(n) time. The idea is simple, we can find XOR value of current subarray of size k by removing first element of previous subarray and adding last element of current subarray. We can remove an element from current XOR by doing XOR of it again because of property of XOR that a ^ x ^ x = a.

Algorithm :

```Let input array be 'arr[]' and size of array be 'n'

max_xor ;  // user to store maximum xor value
current_xor; //  user to store xor value of current subarray
// of size k

// First compute xor value of first subarray of size k
// (i goes from 0 to k)
corrent_xor = current_xor ^ arr[i]

// Initialize maximum XOR
max_xor = current_xor

Traversal rest array (i goes from k to n-1 )
a).  remove first element of previous subarray
current_xor = current_xor ^ arr[i-k]

b).  add new element to subarray
current_xor = current_xor ^ arr[i]

c). update max_xor = max(max_xor, current_xor)

return max_xor ```

Below is the implementation of above steps.

## C++

 `// C++/C program to find maximum xor value of subarray of``// size k``#include``using` `namespace` `std;` `// Returns maximum XOR value of subarray of size k``int` `maximumXOR(``int` `arr[] , ``int` `n , ``int` `k)``{``    ``// Compute XOR value of first subarray of size k``    ``int` `current_xor = 0 ;``    ``for` `(``int` `i = 0 ; i < k ; i++)``        ``current_xor  = current_xor ^ arr[i];` `    ``// Traverse rest of the array``    ``int` `max_xor = current_xor;``    ``for` `(``int` `i = k ; i < n; i++)``    ``{``        ``// First remove previous subarray's first``        ``// element``        ``current_xor = current_xor ^ arr[i-k];` `        ``// add new element``        ``current_xor = current_xor ^ arr[i];` `        ``// Update maximum xor value``        ``max_xor = max(max_xor, current_xor);``    ``}` `    ``return` `max_xor;``}` `// Driver program``int` `main()``{``    ``int` `arr[] = {2, 5, 8 ,1 , 1 ,3} ;``    ``int` `k = 3;``    ``int` `n = ``sizeof``(arr)/``sizeof``(arr[0]);``    ``cout << ``"Maximum XOR : "` `<< maximumXOR(arr, n, k);``    ``return` `0;``}`

## Java

 `// Java program to find maximum xor value of``// subarray of size k``import` `java.io.*;` `class` `GFG {` `    ``// Returns maximum XOR value of subarray of size k``    ``static` `int` `maximumXOR(``int` `arr[] , ``int` `n , ``int` `k)``    ``{``        ` `        ``// Compute XOR value of first subarray of size k``        ``int` `current_xor = ``0` `;``        ``for` `(``int` `i = ``0` `; i < k ; i++)``            ``current_xor = current_xor ^ arr[i];``    ` `        ``// Traverse rest of the array``        ``int` `max_xor = current_xor;``        ` `        ``for` `(``int` `i = k ; i < n; i++)``        ``{``            ` `            ``// First remove previous subarray's first``            ``// element``            ``current_xor = current_xor ^ arr[i-k];``    ` `            ``// add new element``            ``current_xor = current_xor ^ arr[i];``    ` `            ``// Update maximum xor value``            ``max_xor = Math.max(max_xor, current_xor);``        ``}``    ` `        ``return` `max_xor;``    ``}``    ` `    ``// Driver program``    ``public` `static` `void` `main (String[] args)``    ``{``        ``int` `arr[] = {``2``, ``5``, ``8` `,``1` `, ``1` `,``3``} ;``        ``int` `k = ``3``;``        ``int` `n = arr.length;``        ``System.out.println( ``"Maximum XOR : "``                   ``+ maximumXOR(arr, n, k));``    ``}``}` `// This code is contributed by anuj_67.`

## Python 3

 `# Python3 program to find maximum``# xor value of subarray of``# size` `# Returns maximum XOR value``# of subarray of size k``def` `maximumXOR(arr , n , k):` `    ``# Compute XOR value of first``    ``# subarray of size k``    ``current_xor ``=` `0``    ``for` `i ``in` `range` `( k):``        ``current_xor ``=` `current_xor ^ arr[i]` `    ``# Traverse rest of the array``    ``max_xor ``=` `current_xor``    ``for` `i ``in` `range``( k,n):``    ` `        ``# First remove previous subarray's first``        ``# element``        ``current_xor ``=` `current_xor ^ arr[i``-``k]` `        ``# add new element``        ``current_xor ``=` `current_xor ^ arr[i]` `        ``# Update maximum xor value``        ``max_xor ``=` `max``(max_xor, current_xor)``    `  `    ``return` `max_xor` `# Driver program``if` `__name__ ``=``=``"__main__"``:` `    ``arr ``=` `[``2``, ``5``, ``8` `,``1` `, ``1` `,``3``]``    ``k ``=` `3``    ``n ``=` `len``(arr)``    ``print` `(``"Maximum XOR : "``          ``,maximumXOR(arr, n, k))` `# This code is contributed by``# ChitraNayal`

## C#

 `// C# program to find maximum``// xor value of subarray of``// size k``using` `System;``class` `GFG {` `    ``// Returns maximum XOR value``    ``// of subarray of size k``    ``static` `int` `maximumXOR(``int` `[]arr,``                      ``int` `n, ``int` `k)``    ``{``        ` `        ``// Compute XOR value of first``        ``// subarray of size k``        ``int` `current_xor = 0 ;``        ``for` `(``int` `i = 0; i < k; i++)``            ``current_xor = current_xor ^ arr[i];``    ` `        ``// Traverse rest of the array``        ``int` `max_xor = current_xor;``        ` `        ``for` `(``int` `i = k ; i < n; i++)``        ``{``            ` `            ``// First remove previous``            ``// subarray's first``            ``// element``            ``current_xor = current_xor ^ arr[i-k];``    ` `            ``// add new element``            ``current_xor = current_xor ^ arr[i];``    ` `            ``// Update maximum xor value``            ``max_xor = Math.Max(max_xor, current_xor);``        ``}``    ` `        ``return` `max_xor;``    ``}``    ` `    ``// Driver Code``    ``public` `static` `void` `Main ()``    ``{``        ``int` `[]arr = {2, 5, 8 ,1 , 1 ,3} ;``        ``int` `k = 3;``        ``int` `n = arr.Length;``        ``Console.WriteLine(``"Maximum XOR : "``                  ``+ maximumXOR(arr, n, k));``    ``}``}` `// This code is contributed by anuj_67.`

## PHP

 ``

## Javascript

 ``

Output

`Maximum XOR : 15`

Time Complexity : O(n)

Auxiliary Space: O(1)

This article is contributed by Nishant_Singh(Pintu). If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

My Personal Notes arrow_drop_up