Find maximum value of x such that n! % (k^x) = 0

Given two integers n and k. The task is to find the maximum value of x, such that, n! % (k^x) = 0.

Examples:

Input : n = 5, k = 2
Output : 3
Explanation : Given n = 5 and k = 2. So, n! = 120. 
Now for different values of x:
n! % 2^0 = 0,
n! % 2^1 = 0,
n! % 2^2 = 0, 
n! % 2^3 = 0, 
n! % 2^4 = 8, 
n! % 2^5 = 24, 
n! % 2^6 = 56, 
n! % 2^7 = 120. 
So, the answer should be 3.

Input : n = 1000, x = 2
Output : 994

Approach:

  1. First take the squareroot of k and store it in a variable say, m.
  2. Run the loop from i=2 to m.
  3. If i = m then copy k to i.
  4. If k is divisible by i then divide k by i.
  5. Run a loop to n and add the quotient to a varible say, u.
  6. Store the minimum value of r after every loop.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to maximize the value 
// of x such that n! % (k^x) = 0 
#include<iostream>
#include<math.h>
using namespace std;
  
class GfG
  
    // Function to maximize the value 
    // of x such that n! % (k^x) = 0 
    public:
    int findX(int n, int k) 
    
        int r = n, v, u; 
  
        // Find square root of k and add 1 to it 
        int m = sqrt(k) + 1; 
  
        // Run the loop from 2 to m and k 
        // sould be greater than 1 
        for (int i = 2; i <= m && k > 1; i++) { 
            if (i == m) { 
                i = k; 
            
  
            // optimize the value of k 
            for (u = v = 0; k % i == 0; v++) { 
                k /= i; 
            
  
            if (v > 0) { 
                int t = n; 
                while (t > 0) { 
                    t /= i; 
                    u += t; 
                
  
                // Minimum store 
                r = min(r, u / v); 
            
        
  
        return r; 
    
};
  
    // Driver Code 
    int main() 
    {
        GfG g;
        int n = 5; 
        int k = 2; 
        cout<<g.findX(n, k); 
    
  
//This code is contributed by Soumik

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to maximize the value
// of x such that n! % (k^x) = 0
  
import java.util.*;
  
public class GfG {
  
    // Function to maximize the value
    // of x such that n! % (k^x) = 0
    private static int findX(int n, int k)
    {
        int r = n, v, u;
  
        // Find square root of k and add 1 to it
        int m = (int)Math.sqrt(k) + 1;
  
        // Run the loop from 2 to m and k
        // sould be greater than 1
        for (int i = 2; i <= m && k > 1; i++) {
            if (i == m) {
                i = k;
            }
  
            // optimize the value of k
            for (u = v = 0; k % i == 0; v++) {
                k /= i;
            }
  
            if (v > 0) {
                int t = n;
                while (t > 0) {
                    t /= i;
                    u += t;
                }
  
                // Minimum store
                r = Math.min(r, u / v);
            }
        }
  
        return r;
    }
  
    // Driver Code
    public static void main(String args[])
    {
        int n = 5;
        int k = 2;
  
        System.out.println(findX(n, k));
    }
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to maximize the value
# of x such that n! % (k^x) = 0
import math
  
# Function to maximize the value
# of x such that n! % (k^x) = 0
def findX(n, k):
    r =
  
    # Find square root of k 
    # and add 1 to it
    m = int(math.sqrt(k)) + 1
      
    # Run the loop from 2 to m 
    # and k sould be greater than 1
    i = 2
    while i <= m and k > 1 :
        if (i == m) :
              
            i = k
              
        # optimize the value of k
        u = 0
        v = 0
        while k % i == 0 :
            k //= i
            v += 1
          
        if (v > 0) :
            t = n
            while (t > 0) :
                t //= i
                u += t
              
            # Minimum store
            r = min(r, u // v)
              
        i += 1
  
    return r
  
# Driver Code
if __name__ == "__main__":
      
    n = 5
    k = 2
  
    print(findX(n, k))
  
# This code is contributed
# by ChitraNayal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to maximize the value 
// of x such that n! % (k^x) = 0 
  
using System;
  
class GfG
  
    // Function to maximize the value 
    // of x such that n! % (k^x) = 0 
    public int findX(int n, int k) 
    
        int r = n, v, u; 
  
        // Find square root of k and add 1 to it 
        int m = (int)Math.Sqrt(k) + 1; 
  
        // Run the loop from 2 to m and k 
        // sould be greater than 1 
        for (int i = 2; i <= m && k > 1; i++) { 
            if (i == m) { 
                i = k; 
            
  
            // optimize the value of k 
            for (u = v = 0; k % i == 0; v++) { 
                k /= i; 
            
  
            if (v > 0) { 
                int t = n; 
                while (t > 0) { 
                    t /= i; 
                    u += t; 
                
  
                // Minimum store 
                r = Math.Min(r, u / v); 
            
        
  
        return r; 
    
}
  
    // Driver Code 
class geek
{
    public static void Main() 
    {
        GfG g = new GfG();
        int n = 5; 
        int k = 2; 
  
        Console.WriteLine(g.findX(n, k)); 
    

chevron_right


PHP

1; $i++)
{
if ($i == $m)
{
$i = $k;
}

// optimize the value of k
for ($u = $v = 0; $k % $i == 0; $v++)
{
$k = (int)($k / $i);
}

if ($v > 0)
{
$t = $n;
while ($t > 0)
{
$t = (int)($t / $i);
$u = $u + $t;
}

// Minimum store
$r = min($r, (int)($u / $v));
}
}
return $r;
}

// Driver Code
$n = 5;
$k = 2;
echo findX($n, $k);

// This code is contributed by
// Archana_kumari
?>

Output:

3


My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SoM15242, Ita_c, archana_kumari