Given an array **arr[]** of **N** elements, you have to perform the following operation on the given array until the array is reduced to a single elements,

- Choose two indices
**i**and**j**such that**i != j**. - Replace
**arr[i]**with**arr[i] – arr[j]**and remove**arr[j]**from the array.

The task is to maximize and print the value of the last remaining element of the array.

**Examples:**

Input:arr[] = {20, 3, -15, 7}

Output:45

Step 1: We can remove 7 and replace -15 with -22.

step 2: We can remove 3 and replace -22 with -25.

step 3: We can remove -25 and replace 20 with 45.

So 45 is the maximum value that we can get.

Input:arr[] = {5, 4, 6, 2}

Output:13

**Approach:** In order to maximize the value of the last remaining element, there are three cases:

**Array has negative as well as positive numbers:**First we will subtract all positive numbers (except one) from negative numbers. After this, we will only be left with a single positive and a single negative number. Now, we will subtract that negative number from the positive one which will yield a positive number at last as a result. So, in this case, the result is the sum of absolute values of the array elements.**Array contains only positive numbers:**First we find the smallest number and then subtract all positive numbers from it except one positive number. After this we get just one positive number and one negative number, now we will subtract the negative number from that positive one which will yield a positive number at last as a result. Here we can observe that the smallest

number has vanished and also the value is basically cut out from next greater element which is different from case 1. So, in this case the result is the sum of absolute values of array elements – 2 * minimum element.**Array contains only negative numbers:**First we find the largest number and then subtract all negative number from it except one negative number. After this we get just one negative number and one positive number, now we will subtract the negative number from that positive one which will yield a positive number at last as a result. Here we can observe that the largest number has vanished and also the value is basically cut out from next greater element which is different from case 1. So in this case the result is the sum of the absolute values of array elements – 2 * absolute of largest element. Here we take largest as absolute of largest is smallest in case of negative number.

Below is the implementation of the above approach:

## C++

`// C++ implementation of the approach ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// Function to return the maximized value ` `int` `find_maximum_value(` `int` `a[], ` `int` `n) ` `{ ` ` ` `int` `sum = 0; ` ` ` `int` `minimum = INT_MAX; ` ` ` `int` `pos = 0, neg = 0; ` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) { ` ` ` ` ` `// Overall minimum absolute value ` ` ` `// of some element from the array ` ` ` `minimum = min(minimum, ` `abs` `(a[i])); ` ` ` ` ` `// Add all absolute values ` ` ` `sum += ` `abs` `(a[i]); ` ` ` ` ` `// Count positive and negative elements ` ` ` `if` `(a[i] >= 0) ` ` ` `pos += 1; ` ` ` `else` ` ` `neg += 1; ` ` ` `} ` ` ` ` ` `// Both positive and negative ` ` ` `// values are present ` ` ` `if` `(pos > 0 && neg > 0) ` ` ` `return` `sum; ` ` ` ` ` `// Only positive or negative ` ` ` `// values are present ` ` ` `return` `(sum - 2 * minimum); ` `} ` ` ` `// Driver code ` `int` `main() ` `{ ` ` ` `int` `a[] = { 5, 4, 6, 2 }; ` ` ` `int` `n = ` `sizeof` `(a) / ` `sizeof` `(a[0]); ` ` ` ` ` `cout << find_maximum_value(a, n); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

## Java

`// Java implementation of the approach ` `import` `java.io.*; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to return the maximized value ` ` ` `static` `int` `find_maximum_value(` `int` `a[], ` `int` `n) ` ` ` `{ ` ` ` `int` `sum = ` `0` `; ` ` ` `int` `minimum = Integer.MAX_VALUE; ` ` ` `int` `pos = ` `0` `, neg = ` `0` `; ` ` ` ` ` `for` `(` `int` `i = ` `0` `; i < n; i++) ` ` ` `{ ` ` ` ` ` `// Overall minimum absolute value ` ` ` `// of some element from the array ` ` ` `minimum = Math.min(minimum, Math.abs(a[i])); ` ` ` ` ` `// Add all absolute values ` ` ` `sum += Math.abs(a[i]); ` ` ` ` ` `// Count positive and negative elements ` ` ` `if` `(a[i] >= ` `0` `) ` ` ` `pos += ` `1` `; ` ` ` `else` ` ` `neg += ` `1` `; ` ` ` `} ` ` ` ` ` `// Both positive and negative ` ` ` `// values are present ` ` ` `if` `(pos > ` `0` `&& neg > ` `0` `) ` ` ` `return` `sum; ` ` ` ` ` `// Only positive or negative ` ` ` `// values are present ` ` ` `return` `(sum - ` `2` `* minimum); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `public` `static` `void` `main (String[] args) ` ` ` `{ ` ` ` ` ` `int` `[]a = { ` `5` `, ` `4` `, ` `6` `, ` `2` `}; ` ` ` `int` `n = a.length; ` ` ` ` ` `System.out.println(find_maximum_value(a, n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by ajit ` |

*chevron_right*

*filter_none*

## Python

`# Python3 implementation of the approach ` ` ` `# Function to return the maximized value ` `def` `find_maximum_value(a, n): ` ` ` ` ` `sum` `=` `0` ` ` `minimum ` `=` `10` `*` `*` `9` ` ` `pos ` `=` `0` ` ` `neg ` `=` `0` ` ` ` ` `for` `i ` `in` `range` `(n): ` ` ` ` ` `# Overall minimum absolute value ` ` ` `# of some element from the array ` ` ` `minimum ` `=` `min` `(minimum, ` `abs` `(a[i])) ` ` ` ` ` `# Add all absolute values ` ` ` `sum` `+` `=` `abs` `(a[i]) ` ` ` ` ` `# Count positive and negative elements ` ` ` `if` `(a[i] >` `=` `0` `): ` ` ` `pos ` `+` `=` `1` ` ` `else` `: ` ` ` `neg ` `+` `=` `1` ` ` ` ` `# Both positive and negative ` ` ` `# values are present ` ` ` `if` `(pos > ` `0` `and` `neg > ` `0` `): ` ` ` `return` `sum` ` ` ` ` `# Only positive or negative ` ` ` `# values are present ` ` ` `return` `(` `sum` `-` `2` `*` `minimum) ` ` ` `# Driver code ` ` ` `a` `=` `[` `5` `, ` `4` `, ` `6` `, ` `2` `] ` `n ` `=` `len` `(a) ` ` ` `print` `(find_maximum_value(a, n)) ` ` ` `# This code is contributed by mohit kumar 29 ` |

*chevron_right*

*filter_none*

## C#

`// C# implementation of the approach ` `using` `System; ` ` ` `class` `GFG ` `{ ` ` ` ` ` `// Function to return the maximized value ` ` ` `static` `int` `find_maximum_value(` `int` `[]a, ` `int` `n) ` ` ` `{ ` ` ` `int` `sum = 0; ` ` ` `int` `minimum = ` `int` `.MaxValue; ` ` ` `int` `pos = 0, neg = 0; ` ` ` ` ` `for` `(` `int` `i = 0; i < n; i++) ` ` ` `{ ` ` ` ` ` `// Overall minimum absolute value ` ` ` `// of some element from the array ` ` ` `minimum = Math.Min(minimum, Math.Abs(a[i])); ` ` ` ` ` `// Add all absolute values ` ` ` `sum += Math.Abs(a[i]); ` ` ` ` ` `// Count positive and negative elements ` ` ` `if` `(a[i] >= 0) ` ` ` `pos += 1; ` ` ` `else` ` ` `neg += 1; ` ` ` `} ` ` ` ` ` `// Both positive and negative ` ` ` `// values are present ` ` ` `if` `(pos > 0 && neg > 0) ` ` ` `return` `sum; ` ` ` ` ` `// Only positive or negative ` ` ` `// values are present ` ` ` `return` `(sum - 2 * minimum); ` ` ` `} ` ` ` ` ` `// Driver code ` ` ` `static` `public` `void` `Main () ` ` ` `{ ` ` ` `int` `[]a = { 5, 4, 6, 2 }; ` ` ` `int` `n = a.Length; ` ` ` ` ` `Console.WriteLine(find_maximum_value(a, n)); ` ` ` `} ` `} ` ` ` `// This code is contributed by AnkitRai01 ` |

*chevron_right*

*filter_none*

**Output:**

13

**Time Complexity:** O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.