Find maximum value of Sum( i*arr[i]) with only rotations on given array allowed
Given an array arr[] of size N, the task is to find the maximum possible sum of i*arr[i] when the array can be rotated any number of times.
Examples :
Input: arr[] = {1, 20, 2, 10}
Output: 72.We can get 72 by rotating array twice.
{2, 10, 1, 20}
20*3 + 1*2 + 10*1 + 2*0 = 72Input: arr[] = {10, 1, 2, 3, 4, 5, 6, 7, 8, 9}
Output: 330
We can get 330 by rotating array 9 times.
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
0*1 + 1*2 + 2*3 … 9*10 = 330
Naive Approach: The basic idea of this approach is
Find all rotations one by one, check the sum of every rotation and return the maximum sum.
Algorithm
- Start by initializing max_sum to INT_MIN
- Loop say i,from 0 to n-1:
- a. Initialize sum to 0
- b. Loop j from 0 to n-1:
- i. Calculate the index of the j-th element after rotation: (i+j) % n
- ii. Add the product of the element and its index to sum: j * arr[(i+j) % n]
- c. If sum is greater than max_sum, update max_sum to sum
- Return max_sum
C++
#include <climits> #include <iostream> using namespace std; int max_sum_rotation(int arr[], int n) { int max_sum = INT_MIN; // set the maximum sum to the // minimum possible value for (int i = 0; i < n; i++) { // loop through all possible rotations int sum = 0; // set the current sum to zero for (int j = 0; j < n; j++) { // loop through all elements in the // array int index = (i + j) % n; // calculate the index of the current // element after rotation sum += j * arr[index]; // add the product of the // element with its index // to the sum } max_sum = max( max_sum, sum); // update the maximum sum if necessary } return max_sum; // return the maximum sum obtained over // all rotations } int main() { int arr[] = { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // define an array int n = sizeof(arr) / sizeof( arr[0]); // calculate the size of the array cout << max_sum_rotation(arr, n) << endl; // call the function and print the result return 0; // indicate successful program completion }
330
Time Complexity: O(N2), where n is the size of the input array.
Auxiliary Space: O(1), because it uses a constant amount of extra space to store the variables max_sum, sum, i, and j.
Efficient Approach: The idea is as follows:
Let Rj be value of i*arr[i] with j rotations.
- The idea is to calculate the next rotation value from the previous rotation, i.e., calculate Rj from Rj-1.
- We can calculate the initial value of the result as R0, then keep calculating the next rotation values.
How to efficiently calculate Rj from Rj-1?
This can be done in O(1) time. Below are the details.
Let us calculate initial value of i*arr[i] with no rotation
R0 = 0*arr[0] + 1*arr[1] +…+ (n-1)*arr[n-1]After 1 rotation arr[n-1], becomes first element of array,
- arr[0] becomes second element, arr[1] becomes third element and so on.
- R1 = 0*arr[n-1] + 1*arr[0] +…+ (n-1)*arr[n-2]
- R1 – R0 = arr[0] + arr[1] + … + arr[n-2] – (n-1)*arr[n-1]
After 2 rotations arr[n-2], becomes first element of array,
- arr[n-1] becomes second element, arr[0] becomes third element and so on.
- R2 = 0*arr[n-2] + 1*arr[n-1] +…+ (n-1)*arr[n-3]
- R2 – R1 = arr[0] + arr[1] + … + arr[n-3] – (n-1)*arr[n-2] + arr[n-1]
If we take a closer look at above values, we can observe below pattern
Rj – Rj-1 = arrSum – n * arr[n-j],
Where arrSum is sum of all array elements, i.e., arrSum = ∑ arr[i] , 0 ≤ i ≤ N-1
Follow the below illustration for a better understanding.
Illustration:
Given arr[]={10, 1, 2, 3, 4, 5, 6, 7, 8, 9},
arrSum = 55, currVal = summation of (i*arr[i]) = 285
In each iteration the currVal is currVal = currVal + arrSum-n*arr[n-j] ,1st rotation: currVal = 285 + 55 – (10 * 9) = 250
2nd rotation: currVal = 285 + 55 – (10 * 8) = 260
3rd rotation: currVal = 285 + 55 – (10 * 7) = 270
.
.
.
Last rotation: currVal = 285 + 55 – (10 * 1) = 330Previous currVal was 285, now it becomes 330.
It’s the maximum value we can find hence return 330.
Follow the steps mentioned below to implement the above approach:
- Compute the sum of all array elements. Let this sum be ‘arrSum‘.
- Compute R0 for the given array. Let this value be currVal.
- Loop from j = 1 to N-1 to calculate the value for each rotation:
- Update the currVal using the formula mentioned above.
- Update the maximum sum accordingly in each step.
- Return the maximum value as the required answer.
Below is the implementation of the above idea.
C++
// C++ program to find max value of i*arr[i] #include <iostream> using namespace std; // Returns max possible value of i*arr[i] int maxSum(int arr[], int n) { // Find array sum and i*arr[i] with no rotation int arrSum = 0; // Stores sum of arr[i] int currVal = 0; // Stores sum of i*arr[i] for (int i = 0; i < n; i++) { arrSum = arrSum + arr[i]; currVal = currVal + (i * arr[i]); } // Initialize result as 0 rotation sum int maxVal = currVal; // Try all rotations one by one and find // the maximum rotation sum. for (int j = 1; j < n; j++) { currVal = currVal + arrSum - n * arr[n - j]; if (currVal > maxVal) maxVal = currVal; } // Return result return maxVal; } // Driver program int main(void) { int arr[] = { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; int n = sizeof(arr) / sizeof(arr[0]); cout << "\nMax sum is " << maxSum(arr, n); return 0; }
Java
// Java program to find max value of i*arr[i] import java.util.Arrays; class Test { static int arr[] = new int[] { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // Returns max possible value of i*arr[i] static int maxSum() { // Find array sum and i*arr[i] with no rotation int arrSum = 0; // Stores sum of arr[i] int currVal = 0; // Stores sum of i*arr[i] for (int i = 0; i < arr.length; i++) { arrSum = arrSum + arr[i]; currVal = currVal + (i * arr[i]); } // Initialize result as 0 rotation sum int maxVal = currVal; // Try all rotations one by one and find // the maximum rotation sum. for (int j = 1; j < arr.length; j++) { currVal = currVal + arrSum - arr.length * arr[arr.length - j]; if (currVal > maxVal) maxVal = currVal; } // Return result return maxVal; } // Driver method to test the above function public static void main(String[] args) { System.out.println("Max sum is " + maxSum()); } }
Python
'''Python program to find maximum value of Sum(i*arr[i])''' # returns max possible value of Sum(i*arr[i]) def maxSum(arr): # stores sum of arr[i] arrSum = 0 # stores sum of i*arr[i] currVal = 0 n = len(arr) for i in range(0, n): arrSum = arrSum + arr[i] currVal = currVal + (i*arr[i]) # initialize result maxVal = currVal # try all rotations one by one and find the maximum # rotation sum for j in range(1, n): currVal = currVal + arrSum-n*arr[n-j] if currVal > maxVal: maxVal = currVal # return result return maxVal # test maxsum(arr) function if __name__ == '__main__': arr = [10, 1, 2, 3, 4, 5, 6, 7, 8, 9] print "Max sum is: ", maxSum(arr)
C#
// C# program to find max value of i*arr[i] using System; class Test { static int[] arr = new int[] { 10, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // Returns max possible value of i*arr[i] static int maxSum() { // Find array sum and i*arr[i] // with no rotation int arrSum = 0; // Stores sum of arr[i] int currVal = 0; // Stores sum of i*arr[i] for (int i = 0; i < arr.Length; i++) { arrSum = arrSum + arr[i]; currVal = currVal + (i * arr[i]); } // Initialize result as 0 rotation sum int maxVal = currVal; // Try all rotations one by one and find // the maximum rotation sum. for (int j = 1; j < arr.Length; j++) { currVal = currVal + arrSum - arr.Length * arr[arr.Length - j]; if (currVal > maxVal) maxVal = currVal; } // Return result return maxVal; } // Driver Code public static void Main() { Console.WriteLine("Max sum is " + maxSum()); } } // This article is contributed by vt_m.
PHP
<?php // PHP program to find max // value of i*arr[i] // Returns max possible // value of i*arr[i] function maxSum($arr, $n) { // Find array sum and // i*arr[i] with no rotation // Stores sum of arr[i] $arrSum = 0; // Stores sum of i*arr[i] $currVal = 0; for ($i = 0; $i < $n; $i++) { $arrSum = $arrSum + $arr[$i]; $currVal = $currVal + ($i * $arr[$i]); } // Initialize result as // 0 rotation sum $maxVal = $currVal; // Try all rotations one // by one and find the // maximum rotation sum. for ($j = 1; $j < $n; $j++) { $currVal = $currVal + $arrSum - $n * $arr[$n - $j]; if ($currVal > $maxVal) $maxVal = $currVal; } // Return result return $maxVal; } // Driver Code $arr = array (10, 1, 2, 3, 4, 5, 6, 7, 8, 9); $n = sizeof($arr); echo "Max sum is " , maxSum($arr, $n); // This code is contributed by m_kit ?>
Javascript
<script> // JavaScript program to find max value of i*arr[i] // Returns max possible value of i*arr[i] function maxSum(arr, n) { // Find array sum and i*arr[i] with no rotation let arrSum = 0; // Stores sum of arr[i] let currVal = 0; // Stores sum of i*arr[i] for (let i=0; i<n; i++) { arrSum = arrSum + arr[i]; currVal = currVal+(i*arr[i]); } // Initialize result as 0 rotation sum let maxVal = currVal; // Try all rotations one by one and find // the maximum rotation sum. for (let j=1; j<n; j++) { currVal = currVal + arrSum-n*arr[n-j]; if (currVal > maxVal) maxVal = currVal; } // Return result return maxVal; } // Driver program let arr = [10, 1, 2, 3, 4, 5, 6, 7, 8, 9]; let n = arr.length; document.write("Max sum is " + maxSum(arr, n)); // This code is contributed by Surbhi Tyagi. </script>
Max sum is 330
Time Complexity: O(N)
Auxiliary Space: O(1)
Please Login to comment...