Find Maximum number possible by doing at-most K swaps
Given a positive integer, find the maximum integer possible by doing at-most K swap operations on its digits.
Examples:
Input: M = 254, K = 1 Output: 524 Swap 5 with 2 so number becomes 524 Input: M = 254, K = 2 Output: 542 Swap 5 with 2 so number becomes 524 Swap 4 with 2 so number becomes 542 Input: M = 68543, K = 1 Output: 86543 Swap 8 with 6 so number becomes 86543 Input: M = 7599, K = 2 Output: 9975 Swap 9 with 5 so number becomes 7995 Swap 9 with 7 so number becomes 9975 Input: M = 76543, K = 1 Output: 76543 Explanation: No swap is required. Input: M = 129814999, K = 4 Output: 999984211 Swap 9 with 1 so number becomes 929814991 Swap 9 with 2 so number becomes 999814291 Swap 9 with 8 so number becomes 999914281 Swap 1 with 8 so number becomes 999984211
Naive Solution:
Approach: The idea is to consider every digit and swap it with digits following it one at a time and see if it leads to the maximum number. The process is repeated K times. The code can be further optimized, if the current digit is swapped with a digit less than the following digit.
Algorithm:
- Create a global variable which will store the maximum string or number.
- Define a recursive function that takes the string as number and value of k
- Run a nested loop, the outer loop from 0 to length of string -1 and inner loop from i+1 to end of the string.
- Swap the ith and jth character and check if the string is now maximum and update the maximum string.
- Call the function recursively with parameters: string and k-1.
- Now again swap back the ith and jth character.
C++
// C++ program to find maximum // integer possible by doing // at-most K swap operations // on its digits. #include <bits/stdc++.h> using namespace std; // Function to find maximum // integer possible by // doing at-most K swap // operations on its digits void findMaximumNum( string str, int k, string& max) { // Return if no swaps left if (k == 0) return ; int n = str.length(); // Consider every digit for ( int i = 0; i < n - 1; i++) { // Compare it with all digits after it for ( int j = i + 1; j < n; j++) { // if digit at position i // is less than digit // at position j, swap it // and check for maximum // number so far and recurse // for remaining swaps if (str[i] < str[j]) { // swap str[i] with str[j] swap(str[i], str[j]); // If current num is more // than maximum so far if (str.compare(max) > 0) max = str; // recurse of the other k - 1 swaps findMaximumNum(str, k - 1, max); // Backtrack swap(str[i], str[j]); } } } } // Driver code int main() { string str = "129814999" ; int k = 4; string max = str; findMaximumNum(str, k, max); cout << max << endl; return 0; } |
Java
// Java program to find maximum // integer possible by doing // at-most K swap operations // on its digits. import java.util.*; class GFG{ static String max; // Function to find maximum // integer possible by // doing at-most K swap // operations on its digits static void findMaximumNum( char [] str, int k) { // Return if no swaps left if (k == 0 ) return ; int n = str.length; // Consider every digit for ( int i = 0 ; i < n - 1 ; i++) { // Compare it with all digits // after it for ( int j = i + 1 ; j < n; j++) { // if digit at position i // is less than digit // at position j, swap it // and check for maximum // number so far and recurse // for remaining swaps if (str[i] < str[j]) { // swap str[i] with // str[j] char t = str[i]; str[i] = str[j]; str[j] = t; // If current num is more // than maximum so far if (String.valueOf(str).compareTo(max) > 0 ) max = String.valueOf(str); // recurse of the other // k - 1 swaps findMaximumNum(str, k - 1 ); // Backtrack char c = str[i]; str[i] = str[j]; str[j] = c; } } } } // Driver code public static void main(String[] args) { String str = "129814999" ; int k = 4 ; max = str; findMaximumNum(str.toCharArray(), k); System.out.print(max + "\n" ); } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to find maximum # integer possible by doing at-most # K swap operations on its digits. # utility function to swap two # characters of a string def swap(string, i, j): return (string[:i] + string[j] + string[i + 1 :j] + string[i] + string[j + 1 :]) # function to find maximum integer # possible by doing at-most K swap # operations on its digits def findMaximumNum(string, k, maxm): # return if no swaps left if k = = 0 : return n = len (string) # consider every digit for i in range (n - 1 ): # and compare it with all digits after it for j in range (i + 1 , n): # if digit at position i is less than # digit at position j, swap it and # check for maximum number so far and # recurse for remaining swaps if string[i] < string[j]: # swap string[i] with string[j] string = swap(string, i, j) # If current num is more than # maximum so far if string > maxm[ 0 ]: maxm[ 0 ] = string # recurse of the other k - 1 swaps findMaximumNum(string, k - 1 , maxm) # backtrack string = swap(string, i, j) # Driver Code if __name__ = = "__main__" : string = "129814999" k = 4 maxm = [string] findMaximumNum(string, k, maxm) print (maxm[ 0 ]) # This code is contributed # by vibhu4agarwal |
C#
// C# program to find maximum // integer possible by doing // at-most K swap operations // on its digits. using System; class GFG{ static String max; // Function to find maximum // integer possible by // doing at-most K swap // operations on its digits static void findMaximumNum( char [] str, int k) { // Return if no swaps left if (k == 0) return ; int n = str.Length; // Consider every digit for ( int i = 0; i < n - 1; i++) { // Compare it with all digits // after it for ( int j = i + 1; j < n; j++) { // if digit at position i // is less than digit // at position j, swap it // and check for maximum // number so far and recurse // for remaining swaps if (str[i] < str[j]) { // swap str[i] with // str[j] char t = str[i]; str[i] = str[j]; str[j] = t; // If current num is more // than maximum so far if (String.Join( "" , str).CompareTo(max) > 0) max = String.Join( "" , str); // recurse of the other // k - 1 swaps findMaximumNum(str, k - 1); // Backtrack char c = str[i]; str[i] = str[j]; str[j] = c; } } } } // Driver code public static void Main(String[] args) { String str = "129814999" ; int k = 4; max = str; findMaximumNum(str.ToCharArray(), k); Console.Write(max + "\n" ); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // Javascript program to find maximum // integer possible by doing // at-most K swap operations // on its digits. let max; // Function to find maximum // integer possible by // doing at-most K swap // operations on its digits function findMaximumNum(str,k) { // Return if no swaps left if (k == 0) return ; let n = str.length; // Consider every digit for (let i = 0; i < n - 1; i++) { // Compare it with all digits // after it for (let j = i + 1; j < n; j++) { // if digit at position i // is less than digit // at position j, swap it // and check for maximum // number so far and recurse // for remaining swaps if (str[i] < str[j]) { // swap str[i] with // str[j] let t = str[i]; str[i] = str[j]; str[j] = t; // If current num is more // than maximum so far if ((str).join( "" )>(max) ) max = (str).join( "" ); // recurse of the other // k - 1 swaps findMaximumNum(str, k - 1); // Backtrack let c = str[i]; str[i] = str[j]; str[j] = c; } } } } // Driver code let str = "129814999" ; let k = 4; max = str; findMaximumNum(str.split( "" ), k); document.write(max + "<br>" ); // This code is contributed by unknown2108 </script> |
999984211
Complexity Analysis:
- Time Complexity: O((n^2)^k).
For every recursive call n^2 recursive calls is generated until the value of k is 0. So total recursive calls are O((n^2)^k). - Space Complexity:O(n).
This is the space required to store the output string.
Efficient Solution:
Approach: The above approach traverses the whole string at each recursive call which is highly inefficient and unnecessary. Also, pre-computing the maximum digit after the current at a recursive call avoids unnecessary exchanges with each digit. It can be observed that to make the maximum string, the maximum digit is shifted to the front. So, instead of trying all pairs, try only those pairs where one of the elements is the maximum digit which is not yet swapped to the front.
There is an improvement by 27580 microseconds for each test case.
Algorithm:
- Create a global variable which will store the maximum string or number.
- Define a recursive function that takes the string as a number, the value of k, and the current index.
- Find the index of the maximum element in the range current index to end.
- if the index of the maximum element is not equal to the current index then decrement the value of k.
- Run a loop from the current index to the end of the array
- If the ith digit is equal to the maximum element
- Swap the ith and element at the current index and check if the string is now maximum and update the maximum string.
- Call the function recursively with parameters: string and k.
- Now again swap back the ith and element at the current index.
C++
// C++ program to find maximum // integer possible by doing // at-most K swap operations on // its digits. #include <bits/stdc++.h> using namespace std; // Function to find maximum // integer possible by // doing at-most K swap operations // on its digits void findMaximumNum( string str, int k, string& max, int ctr) { // return if no swaps left if (k == 0) return ; int n = str.length(); // Consider every digit after // the cur position char maxm = str[ctr]; for ( int j = ctr + 1; j < n; j++) { // Find maximum digit greater // than at ctr among rest if (maxm < str[j]) maxm = str[j]; } // If maxm is not equal to str[ctr], // decrement k if (maxm != str[ctr]) --k; // search this maximum among the rest from behind //first swap the last maximum digit if it occurs more then 1 time //example str= 1293498 and k=1 then max string is 9293418 instead of 9213498 for ( int j = n-1; j >=ctr; j--) { // If digit equals maxm swap // the digit with current // digit and recurse for the rest if (str[j] == maxm) { // swap str[ctr] with str[j] swap(str[ctr], str[j]); // If current num is more than // maximum so far if (str.compare(max) > 0) max = str; // recurse other swaps after cur findMaximumNum(str, k, max, ctr + 1); // Backtrack swap(str[ctr], str[j]); } } } // Driver code int main() { string str = "129814999" ; int k = 4; string max = str; findMaximumNum(str, k, max, 0); cout << max << endl; return 0; } |
Java
// Java program to find maximum // integer possible by doing // at-most K swap operations on // its digits. import java.io.*; class Res { static String max = "" ; } class Solution { // Function to set highest possible digits at given // index. public static void findMaximumNum( char ar[], int k, Res r) { if (k == 0 ) return ; int n = ar.length; for ( int i = 0 ; i < n - 1 ; i++) { for ( int j = i + 1 ; j < n; j++) { // if digit at position i is less than digit // at position j, we swap them and check for // maximum number so far. if (ar[j] > ar[i]) { char temp = ar[i]; ar[i] = ar[j]; ar[j] = temp; String st = new String(ar); // if current number is more than // maximum so far if (r.max.compareTo(st) < 0 ) { r.max = st; } // calling recursive function to set the // next digit. findMaximumNum(ar, k - 1 , r); // backtracking temp = ar[i]; ar[i] = ar[j]; ar[j] = temp; } } } } // Function to find the largest number after k swaps. public static void main(String[] args) { String str = "129814999" ; int k = 4 ; Res r = new Res(); r.max = str; findMaximumNum(str.toCharArray(), k, r); //Print the answer stored in res class System.out.println(r.max); } } |
C#
// C# program to find maximum // integer possible by doing // at-most K swap operations on // its digits. using System; class Res { public String max = "" ; } public class Solution { // Function to set highest possible digits at given // index. static void findMaximumNum( char []ar, int k, Res r) { if (k == 0) return ; int n = ar.Length; for ( int i = 0; i < n - 1; i++) { for ( int j = i + 1; j < n; j++) { // if digit at position i is less than digit // at position j, we swap them and check for // maximum number so far. if (ar[j] > ar[i]) { char temp = ar[i]; ar[i] = ar[j]; ar[j] = temp; String st = new String(ar); // if current number is more than // maximum so far if (r.max.CompareTo(st) < 0) { r.max = st; } // calling recursive function to set the // next digit. findMaximumNum(ar, k - 1, r); // backtracking temp = ar[i]; ar[i] = ar[j]; ar[j] = temp; } } } } // Function to find the largest number after k swaps. public static void Main(String[] args) { String str = "129814999" ; int k = 4; Res r = new Res(); r.max = str; findMaximumNum(str.ToCharArray(), k, r); // Print the answer stored in res class Console.WriteLine(r.max); } } // This code is contributed by shikhasingrajput |
999984211
Complexity Analysis:
- Time Complexity: O(n^k).
For every recursive call n recursive calls is generated until the value of k is 0. So total recursive calls are O((n)^k). - Space Complexity: O(n).
The space required to store the output string.
Exercise:
- Find minimum integer possible by doing at-least K swap operations on its digits.
- Find maximum/minimum integer possible by doing exactly K swap operations on its digits.
This article is contributed by Aditya Goel.If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.