Find maximum in stack in O(1) without using additional stack
The task is to design a stack which can get the maximum value in the stack in O(1) time without using an additional stack.
Examples:
Input:
push(2)
findMax()
push(6)
findMax()
pop()
findMax()
Output:
2 inserted in stack
Maximum value in the stack: 2
6 inserted in stack
Maximum value in the stack: 6
Element popped
Maximum value in the stack: 2
Approach: Instead of pushing a single element to the stack, push a pair instead. The pair consists of the (value, localMax) where localMax is the maximum value upto that element.
- When we insert a new element, if the new element is greater than the local maximum below it, we set the local maximum of a new element equal to the element itself.
- Else, we set the local maximum of the new element equal to the local maximum of the element below it.
- The local maximum of the top of the stack will be the overall maximum.
- Now if we want to know the maximum at any given point, we ask the top of the stack for local maximum associated with it which can be done in O(1).
Below is the implementation of the above approach:
C++
// C++ implementation of the approach #include <iostream> using namespace std; struct Block { // A block has two elements // as components int value, localMax; }; class Stack { private : // Pointer of type block, // Will be useful later as the // size can be dynamically allocated struct Block* S; int size, top; public : Stack( int ); void push( int ); void pop(); void max(); }; Stack::Stack( int n) { // Setting size of stack and // initial value of top size = n; S = new Block[n]; top = -1; } // Function to push an element to the stack void Stack::push( int n) { // Doesn't allow pushing elements // if stack is full if (top == size - 1) { cout << "Stack is full" << endl; } else { top++; // If the inserted element is the first element // then it is the maximum element, since no other // elements is in the stack, so the localMax // of the first element is the element itself if (top == 0) { S[top].value = n; S[top].localMax = n; } else { // If the newly pushed element is // less than the localMax of element below it, // Then the over all maximum doesn't change // and hence, the localMax of the newly inserted // element is same as element below it if (S[top - 1].localMax > n) { S[top].value = n; S[top].localMax = S[top - 1].localMax; } // Newly inserted element is greater than the localMax // below it, hence the localMax of new element // is the element itself else { S[top].value = n; S[top].localMax = n; } } cout << n << " inserted in stack" << endl; } } // Function to remove an element // from the top of the stack void Stack::pop() { // If stack is empty if (top == -1) { cout << "Stack is empty" << endl; } // Remove the element if the stack // is not empty else { top--; cout << "Element popped" << endl; } } // Function to find the maximum // element from the stack void Stack::max() { // If stack is empty if (top == -1) { cout << "Stack is empty" << endl; } else { // The overall maximum is the local maximum // of the top element cout << "Maximum value in the stack: " << S[top].localMax << endl; } } // Driver code int main() { // Create stack of size 5 Stack S1(5); S1.push(2); S1.max(); S1.push(6); S1.max(); S1.pop(); S1.max(); return 0; } |
Java
// Java implementation of the approach class GFG { static class Block { // A block has two elements // as components int value, localMax; }; static class Stack { // Pointer of type block, // Will be useful later as the // size can be dynamically allocated Block S[]; int size, top; Stack( int n) { // Setting size of stack and // initial value of top size = n; S = new Block[n]; for ( int i= 0 ;i<n;i++)S[i]= new Block(); top = - 1 ; } // Function to push an element to the stack void push( int n) { // Doesn't allow pushing elements // if stack is full if (top == size - 1 ) { System.out.print( "Stack is full" ); } else { top++; // If the inserted element is the first element // then it is the maximum element, since no other // elements is in the stack, so the localMax // of the first element is the element itself if (top == 0 ) { S[top].value = n; S[top].localMax = n; } else { // If the newly pushed element is // less than the localMax of element below it, // Then the over all maximum doesn't change // and hence, the localMax of the newly inserted // element is same as element below it if (S[top - 1 ].localMax > n) { S[top].value = n; S[top].localMax = S[top - 1 ].localMax; } // Newly inserted element is greater than the localMax // below it, hence the localMax of new element // is the element itself else { S[top].value = n; S[top].localMax = n; } } System.out.println( n + " inserted in stack" ); } } // Function to remove an element // from the top of the stack void pop() { // If stack is empty if (top == - 1 ) { System.out.println( "Stack is empty" ); } // Remove the element if the stack // is not empty else { top--; System.out.println( "Element popped" ); } } // Function to find the maximum // element from the stack void max() { // If stack is empty if (top == - 1 ) { System.out.println( "Stack is empty" ); } else { // The overall maximum is the local maximum // of the top element System.out.println( "Maximum value in the stack: " + S[top].localMax); } } } // Driver code public static void main(String args[]) { // Create stack of size 5 Stack S1= new Stack( 5 ); S1.push( 2 ); S1.max(); S1.push( 6 ); S1.max(); S1.pop(); S1.max(); } } // This code is contributed by Arnab Kundu |
Python3
# Python3 implementation of the approach class Block: # A block has two elements # as components (i.e. value and localMax) def __init__( self , value, localMax): self .value = value self .localMax = localMax class Stack: def __init__( self , size): # Setting size of stack and # initial value of top self .stack = [ None ] * size self .size = size self .top = - 1 # Function to push an element # to the stack def push( self , value): # Don't allow pushing elements # if stack is full if self .top = = self .size - 1 : print ( "Stack is full" ) else : self .top + = 1 # If the inserted element is the first element # then it is the maximum element, since no other # elements is in the stack, so the localMax # of the first element is the element itself if self .top = = 0 : self .stack[ self .top] = Block(value, value) else : # If the newly pushed element is less # than the localMax of element below it, # Then the over all maximum doesn't change # and hence, the localMax of the newly inserted # element is same as element below it if self .stack[ self .top - 1 ].localMax > value: self .stack[ self .top] = Block( value, self .stack[ self .top - 1 ].localMax) # Newly inserted element is greater than # the localMax below it, hence the localMax # of new element is the element itself else : self .stack self .stack[ self .top] = Block(value, value) print (value, "inserted in the stack" ) # Function to remove an element # from the top of the stack def pop( self ): # If stack is empty if self .top = = - 1 : print ( "Stack is empty" ) # Remove the element if the stack # is not empty else : self .top - = 1 print ( "Element popped" ) # Function to find the maximum # element from the stack def max ( self ): # If stack is empty if self .top = = - 1 : print ( "Stack is empty" ) else : # The overall maximum is the local maximum # of the top element print ( "Maximum value in the stack:" , self .stack[ self .top].localMax) # Driver code # Create stack of size 5 stack = Stack( 5 ) stack.push( 2 ) stack. max () stack.push( 6 ) stack. max () stack.pop() stack. max () # This code is contributed by girishthatte |
C#
// C# implementation of the approach using System; class GFG { public class Block { // A block has two elements // as components public int value, localMax; }; public class Stack { // Pointer of type block, // Will be useful later as the // size can be dynamically allocated public Block []S; public int size, top; public Stack( int n) { // Setting size of stack and // initial value of top size = n; S = new Block[n]; for ( int i = 0; i < n; i++)S[i] = new Block(); top = -1; } // Function to push an element to the stack public void push( int n) { // Doesn't allow pushing elements // if stack is full if (top == size - 1) { Console.Write( "Stack is full" ); } else { top++; // If the inserted element is the first element // then it is the maximum element, since no other // elements is in the stack, so the localMax // of the first element is the element itself if (top == 0) { S[top].value = n; S[top].localMax = n; } else { // If the newly pushed element is // less than the localMax of element below it, // Then the over all maximum doesn't change // and hence, the localMax of the newly inserted // element is same as element below it if (S[top - 1].localMax > n) { S[top].value = n; S[top].localMax = S[top - 1].localMax; } // Newly inserted element is greater than the localMax // below it, hence the localMax of new element // is the element itself else { S[top].value = n; S[top].localMax = n; } } Console.WriteLine( n + " inserted in stack" ); } } // Function to remove an element // from the top of the stack public void pop() { // If stack is empty if (top == -1) { Console.WriteLine( "Stack is empty" ); } // Remove the element if the stack // is not empty else { top--; Console.WriteLine( "Element popped" ); } } // Function to find the maximum // element from the stack public void max() { // If stack is empty if (top == -1) { Console.WriteLine( "Stack is empty" ); } else { // The overall maximum is the local maximum // of the top element Console.WriteLine( "Maximum value in the stack: " + S[top].localMax); } } } // Driver code public static void Main(String []args) { // Create stack of size 5 Stack S1 = new Stack(5); S1.push(2); S1.max(); S1.push(6); S1.max(); S1.pop(); S1.max(); } } // This code contributed by Rajput-Ji |
Javascript
<script> /// JavaScript implementation of the approach class Block{ /// A block has two elements /// as components (i.e. value and localMax) constructor(value, localMax){ this .value = value this .localMax = localMax } } class Stack{ constructor(size){ /// Setting size of stack and /// initial value of top this .stack = new Array(size).fill( null ) this .size = size this .top = -1 } // Function to push an element // to the stack push(value){ // Don't allow pushing elements // if stack is full if ( this .top == this .size - 1) document.write( "Stack is full" , "</br>" ) else { this .top += 1 // If the inserted element is the first element // then it is the maximum element, since no other // elements is in the stack, so the localMax // of the first element is the element itthis if ( this .top == 0) this .stack[ this .top] = new Block(value, value) else { // If the newly pushed element is less // than the localMax of element below it, // Then the over all maximum doesn't change // and hence, the localMax of the newly inserted // element is same as element below it if ( this .stack[ this .top - 1].localMax > value){ this .stack[ this .top] = new Block( value, this .stack[ this .top - 1].localMax) } // Newly inserted element is greater than // the localMax below it, hence the localMax // of new element is the element itthis else { this .stack[ this .top] = new Block(value, value) } } document.write(value, "inserted in the stack" , "</br>" ) } } // Function to remove an element // from the top of the stack pop(){ // If stack is empty if ( this .top == -1) document.write( "Stack is empty" , "</br>" ) // Remove the element if the stack // is not empty else { this .top -= 1 document.write( "Element popped" , "</br>" ) } } // Function to find the maximum // element from the stack max(){ // If stack is empty if ( this .top == -1) document.write( "Stack is empty" , "</br>" ) else { // The overall maximum is the local maximum // of the top element document.write( "Maximum value in the stack:" , this .stack[ this .top].localMax, "</br>" ) } } } // Driver code // Create stack of size 5 let stack = new Stack(5) stack.push(2) stack.max() stack.push(6) stack.max() stack.pop() stack.max() /// This code is contributed by shinjanpatra </script> |
Output:
2 inserted in stack Maximum value in the stack: 2 6 inserted in stack Maximum value in the stack: 6 Element popped Maximum value in the stack: 2
Time Complexity : O(1)
Auxiliary Space: O(N)
Please Login to comment...