Skip to content
Related Articles

Related Articles

Find maximum in a stack in O(1) time and O(1) extra space
  • Difficulty Level : Medium
  • Last Updated : 07 Jun, 2019

Given a stack of integers. The task is to design a special stack such that maximum element can be found in O(1) time and O(1) extra space.

Examples:

Given Stack :
2
5
1
64   --> Maximum

So Output must be 64 when getMax() is called.

Below are the different functions designed to push and pop elements from the stack.
Push(x) : Inserts x at the top of stack.

  • If stack is empty, insert x into the stack and make maxEle equal to x.
  • If stack is not empty, compare x with maxEle. Two cases arise:
    • If x is less than or equal to maxEle, simply insert x.
    • If x is greater than maxEle, insert (2*x – maxEle) into the stack and make maxEle equal to x. For example, let previous maxEle was 3. Now we want to insert 4. We update maxEle as 4 and insert 2*4 – 3 = 5 into the stack.

Pop() : Removes an element from top of stack.

  • Remove element from top. Let the removed element be y. Two cases arise:
    • If y is less than or equal to maxEle, the maximum element in the stack is still maxEle.
    • If y is greater than maxEle, the maximum element now becomes (2*maxEle – y), so update (maxEle = 2*maxEle – y). This is where we retrieve previous maximum from current maximum and its value in stack. For example, let the element to be removed be 5 and maxEle be 4. We remove 5 and update maxEle as 2*4 – 5 = 3.

Important Points:



  • Stack doesn’t hold actual value of an element if it is maximum so far.
  • Actual maximum element is always stored in maxEle

Illustration

Push(x)

  • Number to be Inserted: 3, Stack is empty, so insert 3 into stack and maxEle = 3.
  • Number to be Inserted: 5, Stack is not empty, 5> maxEle, insert (2*5-3) into stack and maxEle = 5.
  • Number to be Inserted: 2, Stack is not empty, 2< maxEle, insert 2 into stack and maxEle = 5.
  • Number to be Inserted: 1, Stack is not empty, 1< maxEle, insert 1 into stack and maxEle = 5.

Pop()

  • Initially the maximum element maxEle in the stack is 5.
  • Number removed: 1, Since 1 is less than maxEle just pop 1. maxEle=5.
  • Number removed: 2, 2<maxEle, so number removed is 2 and maxEle is still equal to 5.
  • Number removed: 7, 7> maxEle, original number is maxEle which is 5 and new maxEle = 2*5 – 7 = 3.

C++




// C++ program to implement a stack that supports
// getMaximum() in O(1) time and O(1) extra space.
#include <bits/stdc++.h>
using namespace std;
  
// A user defined stack that supports getMax() in
// addition to push() and pop()
struct MyStack {
    stack<int> s;
    int maxEle;
  
    // Prints maximum element of MyStack
    void getMax()
    {
        if (s.empty())
            cout << "Stack is empty\n";
  
        // variable maxEle stores the maximum element
        // in the stack.
        else
            cout << "Maximum Element in the stack is: "
                 << maxEle << "\n";
    }
  
    // Prints top element of MyStack
    void peek()
    {
        if (s.empty()) {
            cout << "Stack is empty ";
            return;
        }
  
        int t = s.top(); // Top element.
  
        cout << "Top Most Element is: ";
  
        // If t < maxEle means maxEle stores
        // value of t.
        (t > maxEle) ? cout << maxEle : cout << t;
    }
  
    // Remove the top element from MyStack
    void pop()
    {
        if (s.empty()) {
            cout << "Stack is empty\n";
            return;
        }
  
        cout << "Top Most Element Removed: ";
        int t = s.top();
        s.pop();
  
        // Maximum will change as the maximum element
        // of the stack is being removed.
        if (t > maxEle) {
            cout << maxEle << "\n";
            maxEle = 2 * maxEle - t;
        }
  
        else
            cout << t << "\n";
    }
  
    // Removes top element from MyStack
    void push(int x)
    {
        // Insert new number into the stack
        if (s.empty()) {
            maxEle = x;
            s.push(x);
            cout << "Number Inserted: " << x << "\n";
            return;
        }
  
        // If new number is less than maxEle
        if (x > maxEle) {
            s.push(2 * x - maxEle);
            maxEle = x;
        }
  
        else
            s.push(x);
  
        cout << "Number Inserted: " << x << "\n";
    }
};
  
// Driver Code
int main()
{
    MyStack s;
    s.push(3);
    s.push(5);
    s.getMax();
    s.push(7);
    s.push(19);
    s.getMax();
    s.pop();
    s.getMax();
    s.pop();
    s.peek();
  
    return 0;
}

Java




// Java program to implement a stack that supports
// getMaximum() in O(1) time and O(1) extra space.
import java.util.*;
  
class GFG 
{
  
// A user defined stack that supports getMax() in
// addition to push() and pop()
static class MyStack 
{
    Stack<Integer> s = new Stack<Integer>();
    int maxEle;
  
    // Prints maximum element of MyStack
    void getMax()
    {
        if (s.empty())
            System.out.print("Stack is empty\n");
  
        // variable maxEle stores the maximum element
        // in the stack.
        else
            System.out.print("Maximum Element in"
                        "the stack is: "+maxEle + "\n");
  
    }
  
    // Prints top element of MyStack
    void peek()
    {
        if (s.empty())
        {
              
            System.out.print("Stack is empty ");
            return;
        }
  
        int t = s.peek(); // Top element.
  
        System.out.print("Top Most Element is: ");
  
        // If t < maxEle means maxEle stores
        // value of t.
        if(t > maxEle)
            System.out.print(maxEle);
        else
            System.out.print(t);
    }
  
    // Remove the top element from MyStack
    void pop()
    {
        if (s.empty()) 
        {
            System.out.print("Stack is empty\n");
            return;
        }
  
        System.out.print("Top Most Element Removed: ");
        int t = s.peek();
        s.pop();
  
        // Maximum will change as the maximum element
        // of the stack is being removed.
        if (t > maxEle)
        {
            System.out.print(maxEle + "\n");
            maxEle = 2 * maxEle - t;
        }
  
        else
            System.out.print(t + "\n");
    }
  
    // Removes top element from MyStack
    void push(int x)
    {
        // Insert new number into the stack
        if (s.empty()) 
        {
            maxEle = x;
            s.push(x);
            System.out.print("Number Inserted: " + x + "\n");
            return;
        }
  
        // If new number is less than maxEle
        if (x > maxEle) 
        {
            s.push(2 * x - maxEle);
            maxEle = x;
        }
  
        else
            s.push(x);
  
        System.out.print("Number Inserted: " + x + "\n");
    }
};
  
// Driver Code
public static void main(String[] args) 
{
    MyStack s = new MyStack();
    s.push(3);
    s.push(5);
    s.getMax();
    s.push(7);
    s.push(19);
    s.getMax();
    s.pop();
    s.getMax();
    s.pop();
    s.peek();
    }
}
  
/* This code contributed by PrinciRaj1992 */

Python 3




# Class to make a Node 
class Node:
    #Constructor which assign argument to nade's value 
    def __init__(self, value):
        self.value = value
        self.next = None
    
    # This method returns the string representation of the object.
    def __str__(self):
        return "Node({})".format(self.value)
      
    #  __repr__ is same as __str__
    __repr__ = __str__
    
  
class Stack:
    # Stack Constructor initialise top of stack and counter.
    def __init__(self):
        self.top = None
        self.count = 0
        self.maximum = None
          
    #This method returns the string representation of the object (stack).
    def __str__(self):
        temp=self.top
        out=[]
        while temp:
            out.append(str(temp.value))
            temp=temp.next
        out='\n'.join(out)
        return ('Top {} \n\nStack :\n{}'.format(self.top,out))
          
    #  __repr__ is same as __str__
    __repr__=__str__
      
    #This method is used to get minimum element of stack
    def getMax(self):
        if self.top is None:
            return "Stack is empty"
        else:
            print("Maximum Element in the stack is: {}" .format(self.maximum))
  
   
  
    # Method to check if Stack is Empty or not
    def isEmpty(self):
        # If top equals to None then stack is empty 
        if self.top == None:
            return True
        else:
        # If top not equal to None then stack is empty 
            return False
  
    # This method returns length of stack       
    def __len__(self):
        self.count = 0
        tempNode = self.top
        while tempNode:
            tempNode = tempNode.next
            self.count+=1
        return self.count
  
    # This method returns top of stack       
    def peek(self):
        if self.top is None:
            print ("Stack is empty")
        else:    
            if self.top.value > self.maximum:
                print("Top Most Element is: {}" .format(self.maximum))
            else:
                print("Top Most Element is: {}" .format(self.top.value))
  
    #This method is used to add node to stack
    def push(self,value):
        if self.top is None:
            self.top = Node(value)
            self.maximum = value
              
        elif value > self.maximum :
            temp = (2 * value) - self.maximum
            new_node = Node(temp)
            new_node.next = self.top
            self.top = new_node
            self.maximum = value
        else:
            new_node = Node(value)
            new_node.next = self.top
            self.top = new_node
        print("Number Inserted: {}" .format(value))
    
    #This method is used to pop top of stack
    def pop(self):
        if self.top is None:
            print( "Stack is empty")
        else:
            removedNode = self.top.value
            self.top = self.top.next
            if removedNode > self.maximum:
                print ("Top Most Element Removed :{} " .format(self.maximum))
                self.maximum = ( ( 2 * self.maximum ) - removedNode )
            else:
                print ("Top Most Element Removed : {}" .format(removedNode))
  
                  
              
      
 # Driver program to test above class  
stack = Stack() 
  
stack.push(3)
stack.push(5
stack.getMax()
stack.push(7)
stack.push(19)
stack.getMax()     
stack.pop()
stack.getMax()
stack.pop() 
stack.peek()
  
# This code is contributed by Blinkii

C#




// C# program to implement a stack that supports 
// getMaximum() in O(1) time and O(1) extra space. 
using System; 
using System.Collections.Generic;
  
class GFG 
  
// A user defined stack that supports getMax() in 
// addition to push() and pop() 
public class MyStack 
    public Stack<int> s = new Stack<int>(); 
    public int maxEle; 
  
    // Prints maximum element of MyStack 
    public void getMax() 
    
        if (s.Count == 0) 
            Console.Write("Stack is empty\n"); 
  
        // variable maxEle stores the maximum element 
        // in the stack. 
        else
            Console.Write("Maximum Element in"
                        "the stack is: "+maxEle + "\n"); 
  
    
  
    // Prints top element of MyStack 
    public void peek() 
    
        if (s.Count == 0) 
        
              
            Console.Write("Stack is empty "); 
            return
        
  
        int t = s.Peek(); // Top element. 
  
        Console.Write("Top Most Element is: "); 
  
        // If t < maxEle means maxEle stores 
        // value of t. 
        if(t > maxEle) 
            Console.Write(maxEle); 
        else
            Console.Write(t); 
    
  
    // Remove the top element from MyStack 
    public void pop() 
    
        if (s.Count == 0) 
        
            Console.Write("Stack is empty\n"); 
            return
        
  
        Console.Write("Top Most Element Removed: "); 
        int t = s.Peek(); 
        s.Pop(); 
  
        // Maximum will change as the maximum element 
        // of the stack is being removed. 
        if (t > maxEle) 
        
            Console.Write(maxEle + "\n"); 
            maxEle = 2 * maxEle - t; 
        
  
        else
            Console.Write(t + "\n"); 
    
  
    // Removes top element from MyStack 
    public void push(int x) 
    
        // Insert new number into the stack 
        if (s.Count == 0) 
        
            maxEle = x; 
            s.Push(x); 
            Console.Write("Number Inserted: " + x + "\n"); 
            return
        
  
        // If new number is less than maxEle 
        if (x > maxEle) 
        
            s.Push(2 * x - maxEle); 
            maxEle = x; 
        
  
        else
            s.Push(x); 
  
        Console.Write("Number Inserted: " + x + "\n"); 
    
}; 
  
// Driver Code 
public static void Main(String[] args) 
    MyStack s = new MyStack(); 
    s.push(3); 
    s.push(5); 
    s.getMax(); 
    s.push(7); 
    s.push(19); 
    s.getMax(); 
    s.pop(); 
    s.getMax(); 
    s.pop(); 
    s.peek(); 
  
// This code is contributed by Princi Singh
Output:
Number Inserted: 3
Number Inserted: 5
Maximum Element in the stack is: 5
Number Inserted: 7
Number Inserted: 19
Maximum Element in the stack is: 19
Top Most Element Removed: 19
Maximum Element in the stack is: 7
Top Most Element Removed: 7
Top Most Element is: 5

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live and Geeks Classes Live USA

My Personal Notes arrow_drop_up
Recommended Articles
Page :