Find maximum GCD value from root to leaf in a Binary tree

Given a Binary Tree, the task is to find the maximum value of GCD from any path from the root node to the leaf node.

Examples:

Input: Below is the given tree:

Output: 3
Explanation:
Path 1: 15->3->5 = gcd(15, 3, 15) =3
Path 2: 15->3->1 =gcd(15, 3, 1) = 1
Path 3: 15->7->31=gcd(15, 7, 31)= 1
Path 4: 15->7->9 = gcd(15, 7, 9) =1, out of these 3 is the maximum.



Input: Below is the given tree:

Output: 1

Approach: The idea is to traverse all the paths from the root node to the leaf node and calculate the GCD of all the nodes that occurred in that path. Below are the steps:

  1. Perform a preorder traversal on the given Binary Tree.
  2. Iterate over all the paths and track all path values in an array.
  3. Whenever encountered a leaf value then find the GCD of all the values in an array.
  4. Update the GCD to the maximum value.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
  
// Initialise to update the maximum
// gcd value from all the path
int maxm = 0;
  
// Node structure
struct Node {
    int val;
  
    // Left & right child of the node
    Node *left, *right;
  
    // Intialize consutructor
    Node(int x)
    {
        val = x;
        left = NULL;
        right = NULL;
    }
};
  
// Function to find gcd of a and b
int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
  
// function to find the gcd of a path
int find_gcd(vector<int> arr)
{
    if (arr.size() == 1)
        return arr[0];
  
    int g = arr[0];
  
    for (int i = 1; i < arr.size(); i++) {
        g = gcd(g, arr[i]);
    }
  
    return g;
}
  
// Function to find the maximum value
// of gcd from root to leaf
// in a Binary tree
void maxm_gcd(Node* root, vector<int> ans)
{
    // Check if root is not null
    if (!root)
        return;
  
    if (root->left == NULL
        and root->right == NULL) {
        ans.push_back(root->val);
  
        // Find the maxmimum gcd of
        // path value and store in
        // global maxm varibale
        maxm = max(find_gcd(ans),
                   maxm);
  
        return;
    }
  
    // Traverse left of binary tree
    ans.push_back(root->val);
    maxm_gcd(root->left, ans);
  
    // Traverse right of the binary tree
    maxm_gcd(root->right, ans);
}
  
// Driver Code
int main()
{
    // Given Tree
    Node* root = new Node(15);
    root->left = new Node(3);
    root->right = new Node(7);
    root->left->left = new Node(15);
    root->left->right = new Node(1);
    root->right->left = new Node(31);
    root->right->right = new Node(9);
  
    // Function Call
    maxm_gcd(root, {});
  
    // Print the maximum AND value
    cout << maxm << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.util.*;
  
class GFG{
  
// Initialise to update the maximum
// gcd value from all the path
static int maxm = 0;
  
// Node structure
static class Node 
{
    int val;
  
    // Left & right child of the node
    Node left, right;
  
    // Intialize consutructor
    Node(int x)
    {
        val = x;
        left = null;
        right = null;
    }
};
  
// Function to find gcd of a and b
static int gcd(int a, int b)
{
    if (b == 0)
        return a;
    return gcd(b, a % b);
}
  
// Function to find the gcd of a path
static int find_gcd(Vector<Integer> arr)
{
    if (arr.size() == 1)
        return arr.get(0);
  
    int g = arr.get(0);
  
    for(int i = 1; i < arr.size(); i++)
    {
        g = gcd(g, arr.get(1));
    }
    return g;
}
  
// Function to find the maximum value
// of gcd from root to leaf
// in a Binary tree
static void maxm_gcd(Node root, 
                     Vector<Integer> ans)
{
      
    // Check if root is not null
    if (root == null)
        return;
  
    if (root.left == null && 
        root.right == null
    {
        ans.add(root.val);
  
        // Find the maxmimum gcd of
        // path value and store in
        // global maxm varibale
        maxm = Math.max(find_gcd(ans),
                        maxm);
                          
        return;
    }
  
    // Traverse left of binary tree
    ans.add(root.val);
    maxm_gcd(root.left, ans);
  
    // Traverse right of the binary tree
    maxm_gcd(root.right, ans);
}
  
// Driver Code
public static void main(String[] args)
{
      
    // Given Tree
    Node root = new Node(15);
    root.left = new Node(3);
    root.right = new Node(7);
    root.left.left = new Node(15);
    root.left.right = new Node(1);
    root.right.left = new Node(31);
    root.right.right = new Node(9);
  
    // Function call
    maxm_gcd(root, new Vector<>());
  
    // Print the maximum AND value
    System.out.print(maxm + "\n");
}
}
  
// This code is contributed by Rajput-Ji

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of
# the above approach
  
# Initialise to update the maximum
# gcd value from all the path
global maxm
maxm = 0
  
# Node structure
class Node:
  
    # Intialize consutructor
    def __init__(self, x):
  
        self.val = x
        self.left = None
        self.right = None
  
# Function to find gcd of a and b
def gcd(a, b):
  
    if(b == 0):
        return a
    return gcd(b, a % b)
  
# Function to find the gcd of a path
def find_gcd(arr):
  
    if(len(arr) == 1):
        return arr[0]
  
    g = arr[0]
  
    for i in range(1, len(arr)):
        g = gcd(g, arr[i])
  
    return g
  
# Function to find the maximum value
# of gcd from root to leaf
# in a Binary tree
def maxm_gcd(root, ans):
  
    global maxm
  
    # Check if root is not null
    if(not root):
        return
  
    if(root.left == None and 
       root.right == None):
        ans.append(root.val)
  
        # Find the maxmimum gcd of
        # path value and store in
        # global maxm varibale
        maxm = max(find_gcd(ans), maxm)
  
        return
  
    # Traverse left of binary tree
    ans.append(root.val)
    maxm_gcd(root.left, ans)
  
    # Traverse right of the binary tree
    maxm_gcd(root.right, ans)
  
# Driver Code
if __name__ == '__main__':
  
    # Given Tree
    root = Node(15)
    root.left = Node(3)
    root.right = Node(7)
    root.left.left = Node(15)
    root.left.right = Node(1)
    root.right.left = Node(31)
    root.right.right = Node(9)
  
    # Function call
    maxm_gcd(root, [])
      
    # Print the maximum AND value
    print(maxm)
  
# This code is contributed by Shivam Singh

chevron_right


Output: 

3

 

Time Complexity: O(N2)
Auxiliary Space: O(N)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : SHIVAMSINGH67, Rajput-Ji