Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find maximum depth of nested parenthesis in a string

  • Difficulty Level : Medium
  • Last Updated : 31 Mar, 2021

We are given a string having parenthesis like below 
     “( ((X)) (((Y))) )” 
We need to find the maximum depth of balanced parenthesis, like 4 in the above example. Since ‘Y’ is surrounded by 4 balanced parentheses. 
If parenthesis is unbalanced then return -1. 

Examples : 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input : S = "( a(b) (c) (d(e(f)g)h) I (j(k)l)m)";
Output : 4

Input : S = "( p((q)) ((s)t) )";
Output : 3

Input : S = "";
Output : 0

Input : S = "b) (c) ()";
Output : -1 

Input : S = "(b) ((c) ()"
Output : -1 

Method 1 (Uses Stack) 
A simple solution is to use a stack that keeps track of current open brackets. 



1) Create a stack. 
2) Traverse the string, do following for every character
     a) If current character is ‘(’ push it to the stack .
     b) If character is ‘)’, pop an element.
     c) Maintain maximum count during the traversal. 

Time Complexity : O(n) 
Auxiliary Space : O(n)

Method 2 ( O(1) auxiliary space ) 
This can also be done without using stack.  

1) Take two variables max and current_max, initialize both of them as 0.
2) Traverse the string, do following for every character
    a) If current character is ‘(’, increment current_max and 
       update max value if required.
    b) If character is ‘)’. Check if current_max is positive or
       not (this condition ensure that parenthesis are balanced). 
       If positive that means we previously had a ‘(’ character 
       so decrement current_max without worry. 
       If not positive then the parenthesis are not balanced. 
       Thus return -1. 
3) If current_max is not 0, then return -1 to ensure that the parenthesis
   are balanced. Else return max

Below is the implementation of the above algorithm.

C++




// A C++ program to find the maximum depth of nested
// parenthesis in a given expression
#include <iostream>
using namespace std;
 
// function takes a string and returns the
// maximum depth nested parenthesis
int maxDepth(string S)
{
    int current_max = 0; // current count
    int max = 0; // overall maximum count
    int n = S.length();
 
    // Traverse the input string
    for (int i = 0; i < n; i++)
    {
        if (S[i] == '(')
        {
            current_max++;
 
            // update max if required
            if (current_max > max)
                max = current_max;
        }
        else if (S[i] == ')')
        {
            if (current_max > 0)
                current_max--;
            else
                return -1;
        }
    }
 
    // finally check for unbalanced string
    if (current_max != 0)
        return -1;
 
    return max;
}
 
// Driver program
int main()
{
    string s = "( ((X)) (((Y))) )";
    cout << maxDepth(s);
    return 0;
}

Java




//Java program to find the maximum depth of nested
// parenthesis in a given expression
 
class GFG {
// function takes a string and returns the
// maximum depth nested parenthesis
 
    static int maxDepth(String S) {
        int current_max = 0; // current count
        int max = 0; // overall maximum count
        int n = S.length();
 
        // Traverse the input string
        for (int i = 0; i < n; i++) {
            if (S.charAt(i) == '(') {
                current_max++;
 
                // update max if required
                if (current_max > max) {
                    max = current_max;
                }
            } else if (S.charAt(i) == ')') {
                if (current_max > 0) {
                    current_max--;
                } else {
                    return -1;
                }
            }
        }
 
        // finally check for unbalanced string
        if (current_max != 0) {
            return -1;
        }
 
        return max;
    }
 
// Driver program
    public static void main(String[] args) {
        String s = "( ((X)) (((Y))) )";
        System.out.println(maxDepth(s));
    }
}

Python




# A Python program to find the maximum depth of nested
# parenthesis in a given expression
 
# function takes a string and returns the
# maximum depth nested parenthesis
def maxDepth(S):
    current_max = 0
    max = 0
    n = len(S)
 
    # Traverse the input string
    for i in range(n):
        if S[i] == '(':
            current_max += 1
 
            if current_max > max:
                max = current_max
        elif S[i] == ')':
            if current_max > 0:
                current_max -= 1
            else:
                return -1
 
    # finally check for unbalanced string
    if current_max != 0:
        return -1
 
    return max
 
# Driver program
s = "( ((X)) (((Y))) )"
print (maxDepth(s))
 
# This code is contributed by BHAVYA JAIN

C#




// C# program to find the
// maximum depth of nested
// parenthesis in a given expression
using System;
class GFG {
   
// function takes a string
// and returns the maximum
// depth nested parenthesis
 
static int maxDepth(string S)
{
  // current count
  int current_max = 0;
   
  // overall maximum count
  int max = 0;
   
  int n = S.Length;
 
  // Traverse the input string
  for (int i = 0; i < n; i++)
  {
    if (S[i] == '(')
    {
      current_max++;
 
      // update max if required
      if (current_max > max)
      {
        max = current_max;
      }
    }
    else if (S[i] == ')')
    {
      if (current_max > 0)
      {
        current_max--;
      }
      else
      {
        return -1;
      }
    }
  }
 
  // finally check for unbalanced string
  if (current_max != 0)
  {
    return -1;
  }
 
  return max;
}
 
// Driver program
public static void Main()
{
  string s = "(((X)) (((Y))))";
  Console.Write(maxDepth(s));
}
}
 
// This code is contributed by Chitranayal

PHP




<?php
// A PHP program to find the
// maximum depth of nested
// parenthesis in a given
// expression
 
// function takes a string 
// and returns the maximum
// depth nested parenthesis
function maxDepth($S)
{
    // current count
    $current_max = 0;
     
    // overall maximum count
    $max = 0;
    $n = strlen($S);
 
    // Traverse the input string
    for ($i = 0; $i < $n; $i++)
    {
        if ($S[$i] == '(')
        {
            $current_max++;
 
            // update max if required
            if ($current_max> $max)
                $max = $current_max;
        }
         
        else if ($S[$i] == ')')
        {
            if ($current_max>0)
                $current_max--;
            else
                return -1;
        }
    }
 
    // finally check for
    // unbalanced string
    if ($current_max != 0)
        return -1;
 
    return $max;
}
 
// Driver Code
$s = "( ((X)) (((Y))) )";
echo maxDepth($s);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript program to find the
// maximum depth of nested parenthesis
// in a given expression
 
// Function takes a string and returns the
// maximum depth nested parenthesis
function maxDepth(S)
{
     
    // Current count
    let current_max = 0;
     
    // Overall maximum count
    let max = 0;
    let n = S.length;
     
    // Traverse the input string    
    for(let i = 0; i < n; i++)
    {
        if (S[i] == '(')
        {
            current_max++;
             
            // Update max if required
            if (current_max > max)
            {
                max = current_max;
            }
        }
        else if (S[i] == ')')
        {
             if (current_max > 0)
             {
                current_max--;
            } else
            {
                return -1;
            }
        }
    }
     
    // Finally check for unbalanced string
    if (current_max != 0)
    {
        return -1;
    }
 
    return max;
}
 
// Driver code
let s = "( ((X)) (((Y))) )";
 
document.write(maxDepth(s));
 
// This code is contributed by avanitrachhadiya2155
     
</script>

Output : 

 4 

Time Complexity: O(n) 
Auxiliary Space: O(1) 

?list=PLqM7alHXFySF7Lap-wi5qlaD8OEBx9RMV
 

This article is contributed by Gaurav Sharma. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :