Find maximum depth of nested parenthesis in a string

We are given a string having parenthesis like below
     “( ((X)) (((Y))) )”
We need to find the maximum depth of balanced parenthesis, like 4 in above example. Since ‘Y’ is surrounded by 4 balanced parenthesis.

If parenthesis are unbalanced then return -1.

Examples :

Input : S = "( a(b) (c) (d(e(f)g)h) I (j(k)l)m)";
Output : 4

Input : S = "( p((q)) ((s)t) )";
Output : 3

Input : S = "";
Output : 0

Input : S = "b) (c) ()";
Output : -1 

Input : S = "(b) ((c) ()"
Output : -1 

Method 1 (Uses Stack)
A simple solution is to use a stack that keeps track of current open brackets.



1) Create a stack. 
2) Traverse the string, do following for every character
     a) If current character is ‘(’ push it to the stack .
     b) If character is ‘)’, pop an element.
     c) Maintain maximum count during the traversal. 

Time Complexity : O(n)
Auxiliary Space : O(n)

Method 2 ( O(1) auxiliary space )
This can also be done without using stack.

1) Take two variables max and current_max, initialize both of them as 0.
2) Traverse the string, do following for every character
    a) If current character is ‘(’, increment current_max and 
       update max value if required.
    b) If character is ‘)’. Check if current_max is positive or
       not (this condition ensure that parenthesis are balanced). 
       If positive that means we previously had a ‘(’ character 
       so decrement current_max without worry. 
       If not positive then the parenthesis are not balanced. 
       Thus return -1. 
3) If current_max is not 0, then return -1 to ensure that the parenthesis
   are balanced. Else return max

Below is the implementation of above algorithm.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// A C++ program to find the maximum depth of nested
// parenthesis in a given expression
#include <iostream>
using namespace std;
  
// function takes a string and returns the
// maximum depth nested parenthesis
int maxDepth(string S)
{
    int current_max = 0; // current count
    int max = 0;    // overall maximum count
    int n = S.length();
  
    // Traverse the input string
    for (int i = 0; i< n; i++)
    {
        if (S[i] == '(')
        {
            current_max++;
  
            // update max if required
            if (current_max> max)
                max = current_max;
        }
        else if (S[i] == ')')
        {
            if (current_max>0)
                current_max--;
            else
                return -1;
        }
    }
  
    // finally check for unbalanced string
    if (current_max != 0)
        return -1;
  
    return max;
}
  
// Driver program
int main()
{
    string s = "( ((X)) (((Y))) )";
    cout << maxDepth(s);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java program to find the maximum depth of nested 
// parenthesis in a given expression 
  
class GFG {
// function takes a string and returns the 
// maximum depth nested parenthesis 
  
    static int maxDepth(String S) {
        int current_max = 0; // current count 
        int max = 0; // overall maximum count 
        int n = S.length();
  
        // Traverse the input string 
        for (int i = 0; i < n; i++) {
            if (S.charAt(i) == '(') {
                current_max++;
  
                // update max if required 
                if (current_max > max) {
                    max = current_max;
                }
            } else if (S.charAt(i) == ')') {
                if (current_max > 0) {
                    current_max--;
                } else {
                    return -1;
                }
            }
        }
  
        // finally check for unbalanced string 
        if (current_max != 0) {
            return -1;
        }
  
        return max;
    }
  
// Driver program 
    public static void main(String[] args) {
        String s = "( ((X)) (((Y))) )";
        System.out.println(maxDepth(s));
    }
}

chevron_right


Python

filter_none

edit
close

play_arrow

link
brightness_4
code

# A Python program to find the maximum depth of nested
# parenthesis in a given expression
  
# function takes a string and returns the
# maximum depth nested parenthesis
def maxDepth(S):
    current_max = 0
    max = 0
    n = len(S)
  
    # Traverse the input string
    for i in xrange(n):
        if S[i] == '(':
            current_max += 1
  
            if current_max > max:
                max = current_max
        elif S[i] == ')':
            if current_max > 0:
                current_max -= 1
            else:
                return -1
  
    # finally check for unbalanced string
    if current_max != 0:
        return -1
  
    return max
  
# Driver program
s = "( ((X)) (((Y))) )"
print maxDepth(s)
  
# This code is contributed by BHAVYA JAIN

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// A PHP program to find the 
// maximum depth of nested 
// parenthesis in a given
// expression
  
// function takes a string  
// and returns the maximum 
// depth nested parenthesis
function maxDepth($S)
{
    // current count
    $current_max = 0; 
      
    // overall maximum count
    $max = 0; 
    $n = strlen($S);
  
    // Traverse the input string
    for ($i = 0; $i < $n; $i++)
    {
        if ($S[$i] == '(')
        {
            $current_max++;
  
            // update max if required
            if ($current_max> $max)
                $max = $current_max;
        }
          
        else if ($S[$i] == ')')
        {
            if ($current_max>0)
                $current_max--;
            else
                return -1;
        }
    }
  
    // finally check for
    // unbalanced string
    if ($current_max != 0)
        return -1;
  
    return $max;
}
  
// Driver Code
$s = "( ((X)) (((Y))) )";
echo maxDepth($s);
  
// This code is contributed by mits
?>

chevron_right



Output :

 4 

Time Complexity : O(n)
Auxiliary Space : O(1)

This article is contributed by Gaurav Sharma. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up



Article Tags :
Practice Tags :


2


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.