Given an array with positive and negative numbers, find the maximum average subarray of the given length.
Example:
Input: arr[] = {1, 12, -5, -6, 50, 3}, k = 4
Output: Maximum average subarray of length 4 begins
at index 1.
Maximum average is (12 - 5 - 6 + 50)/4 = 51/4
A Simple Solution is to run two loops. The outer loop picks starting point, and the inner loop goes to length ‘k’ from the starting point and computes the average of elements.
Time Complexity: O(n*k), as we are using nested loops to traverse n*k times.
Auxiliary Space: O(1), as we are not using any extra space.
A Better Solution is to create an auxiliary array of size n. Store cumulative sum of elements in this array. Let the array be csum[]. csum[i] stores sum of elements from arr[0] to arr[i]. Once we have the csum[] array with us, we can compute the sum between two indexes in O(1) time.
Below is the implementation of this idea. One observation is, that a subarray of a given length has a maximum average if it has a maximum sum. So we can avoid floating-point arithmetic by just comparing sums.
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxAverage( int arr[], int n, int k)
{
if (k > n)
return -1;
int *csum = new int [n];
csum[0] = arr[0];
for ( int i=1; i<n; i++)
csum[i] = csum[i-1] + arr[i];
int max_sum = csum[k-1], max_end = k-1;
for ( int i=k; i<n; i++)
{
int curr_sum = csum[i] - csum[i-k];
if (curr_sum > max_sum)
{
max_sum = curr_sum;
max_end = i;
}
}
delete [] csum;
return max_end - k + 1;
}
int main()
{
int arr[] = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = sizeof (arr)/ sizeof (arr[0]);
cout << "The maximum average subarray of "
"length " << k << " begins at index "
<< findMaxAverage(arr, n, k);
return 0;
}
|
Java
import java .io.*;
class GFG {
static int findMaxAverage( int []arr,
int n, int k)
{
if (k > n)
return - 1 ;
int []csum = new int [n];
csum[ 0 ] = arr[ 0 ];
for ( int i = 1 ; i < n; i++)
csum[i] = csum[i - 1 ] + arr[i];
int max_sum = csum[k - 1 ],
max_end = k - 1 ;
for ( int i = k; i < n; i++)
{
int curr_sum = csum[i] -
csum[i - k];
if (curr_sum > max_sum)
{
max_sum = curr_sum;
max_end = i;
}
}
return max_end - k + 1 ;
}
static public void main (String[] args)
{
int []arr = { 1 , 12 , - 5 , - 6 , 50 , 3 };
int k = 4 ;
int n = arr.length;
System.out.println( "The maximum "
+ "average subarray of length "
+ k + " begins at index "
+ findMaxAverage(arr, n, k));
}
}
|
Python3
def findMaxAverage(arr, n, k):
if k > n:
return - 1
csum = [ 0 ] * n
csum[ 0 ] = arr[ 0 ]
for i in range ( 1 , n):
csum[i] = csum[i - 1 ] + arr[i];
max_sum = csum[k - 1 ]
max_end = k - 1
for i in range (k, n):
curr_sum = csum[i] - csum[i - k]
if curr_sum > max_sum:
max_sum = curr_sum
max_end = i
return max_end - k + 1
arr = [ 1 , 12 , - 5 , - 6 , 50 , 3 ]
k = 4
n = len (arr)
print ( "The maximum average subarray of length" ,k,
"begins at index" ,findMaxAverage(arr, n, k))
|
C#
using System;
class GFG{
static int findMaxAverage( int []arr,
int n, int k)
{
if (k > n)
return -1;
int []csum = new int [n];
csum[0] = arr[0];
for ( int i = 1; i < n; i++)
csum[i] = csum[i - 1] + arr[i];
int max_sum = csum[k - 1],
max_end = k - 1;
for ( int i = k; i < n; i++)
{
int curr_sum = csum[i] -
csum[i - k];
if (curr_sum > max_sum)
{
max_sum = curr_sum;
max_end = i;
}
}
return max_end - k + 1;
}
static public void Main ()
{
int []arr = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = arr.Length;
Console.WriteLine( "The maximum average subarray of " +
"length " + k + " begins at index "
+ findMaxAverage(arr, n, k));
}
}
|
PHP
<?php
function findMaxAverage( $arr , $n , $k )
{
if ( $k > $n )
return -1;
$csum = array ();
$csum [0] = $arr [0];
for ( $i = 1; $i < $n ; $i ++)
$csum [ $i ] = $csum [ $i - 1] +
$arr [ $i ];
$max_sum = $csum [ $k - 1];
$max_end = $k - 1;
for ( $i = $k ; $i < $n ; $i ++)
{
$curr_sum = $csum [ $i ] -
$csum [ $i - $k ];
if ( $curr_sum > $max_sum )
{
$max_sum = $curr_sum ;
$max_end = $i ;
}
}
return $max_end - $k + 1;
}
$arr = array (1, 12, -5, -6, 50, 3);
$k = 4;
$n = count ( $arr );
echo "The maximum average subarray of "
, "length " , $k , " begins at index "
, findMaxAverage( $arr , $n , $k );
?>
|
Javascript
<script>
function findMaxAverage(arr, n, k)
{
if (k > n)
return -1;
let csum = new Array(n);
csum[0] = arr[0];
for (let i = 1; i < n; i++)
csum[i] = csum[i - 1] + arr[i];
let max_sum = csum[k - 1],
max_end = k - 1;
for (let i = k; i < n; i++)
{
let curr_sum = csum[i] - csum[i - k];
if (curr_sum > max_sum)
{
max_sum = curr_sum;
max_end = i;
}
}
return max_end - k + 1;
}
let arr = [ 1, 12, -5, -6, 50, 3 ];
let k = 4;
let n = arr.length;
document.write( "The maximum average subarray of " +
"length " + k + " begins at index " +
findMaxAverage(arr, n, k));
</script>
|
OutputThe maximum average subarray of length 4 begins at index 1
Time Complexity: O(n), as we are using a loop to traverse n times. Where n is the number of elements in the array.
Auxiliary Space: O(n), as we are using extra space for the array csum.
We can avoid the need for extra space by using the below
Efficient Method.
- Compute sum of first ‘k’ elements, i.e., elements arr[0..k-1]. Let this sum be ‘sum’. Initialize ‘max_sum’ as ‘sum’
- Do following for every element arr[i] where i varies from ‘k’ to ‘n-1’
- Remove arr[i-k] from sum and add arr[i], i.e., do sum += arr[i] – arr[i-k]
- If new sum becomes more than max_sum so far, update max_sum.
- Return ‘max_sum’
C++
#include<bits/stdc++.h>
using namespace std;
int findMaxAverage( int arr[], int n, int k)
{
if (k > n)
return -1;
int sum = arr[0];
for ( int i=1; i<k; i++)
sum += arr[i];
int max_sum = sum, max_end = k-1;
for ( int i=k; i<n; i++)
{
sum = sum + arr[i] - arr[i-k];
if (sum > max_sum)
{
max_sum = sum;
max_end = i;
}
}
return max_end - k + 1;
}
int main()
{
int arr[] = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = sizeof (arr)/ sizeof (arr[0]);
cout << "The maximum average subarray of "
"length " << k << " begins at index "
<< findMaxAverage(arr, n, k);
return 0;
}
|
Java
import java.io.*;
class GFG {
static int findMaxAverage( int arr[], int n, int k)
{
if (k > n)
return - 1 ;
int sum = arr[ 0 ];
for ( int i = 1 ; i < k; i++)
sum += arr[i];
int max_sum = sum, max_end = k- 1 ;
for ( int i = k; i < n; i++)
{
sum = sum + arr[i] - arr[i-k];
if (sum > max_sum)
{
max_sum = sum;
max_end = i;
}
}
return max_end - k + 1 ;
}
public static void main (String[] args)
{
int arr[] = { 1 , 12 , - 5 , - 6 , 50 , 3 };
int k = 4 ;
int n = arr.length;
System.out.println( "The maximum average"
+ " subarray of length " + k
+ " begins at index "
+ findMaxAverage(arr, n, k));
}
}
|
Python3
def findMaxAverage(arr, n, k):
if (k > n):
return - 1
sum = arr[ 0 ]
for i in range ( 1 , k):
sum + = arr[i]
max_sum = sum
max_end = k - 1
for i in range (k, n):
sum = sum + arr[i] - arr[i - k]
if ( sum > max_sum):
max_sum = sum
max_end = i
return max_end - k + 1
arr = [ 1 , 12 , - 5 , - 6 , 50 , 3 ]
k = 4
n = len (arr)
print ( "The maximum average subarray of length" , k,
"begins at index" ,
findMaxAverage(arr, n, k))
|
C#
using System;
class GFG {
static int findMaxAverage( int []arr,
int n, int k)
{
if (k > n)
return -1;
int sum = arr[0];
for ( int i = 1; i < k; i++)
sum += arr[i];
int max_sum = sum;
int max_end = k-1;
for ( int i = k; i < n; i++)
{
sum = sum + arr[i] - arr[i-k];
if (sum > max_sum)
{
max_sum = sum;
max_end = i;
}
}
return max_end - k + 1;
}
public static void Main ()
{
int []arr = {1, 12, -5, -6, 50, 3};
int k = 4;
int n = arr.Length;
Console.WriteLine( "The maximum "
+ "average subarray of length "
+ k + " begins at index "
+ findMaxAverage(arr, n, k));
}
}
|
PHP
<?php
function findMaxAverage( $arr , $n , $k )
{
if ( $k > $n )
return -1;
$sum = $arr [0];
for ( $i = 1; $i < $k ; $i ++)
$sum += $arr [ $i ];
$max_sum = $sum ;
$max_end = $k -1;
for ( $i = $k ; $i < $n ; $i ++)
{
$sum = $sum + $arr [ $i ] -
$arr [ $i - $k ];
if ( $sum > $max_sum )
{
$max_sum = $sum ;
$max_end = $i ;
}
}
return $max_end - $k + 1;
}
$arr = array (1, 12, -5, -6, 50, 3);
$k = 4;
$n = count ( $arr );
echo "The maximum average subarray of " ,
"length " , $k , " begins at index "
, findMaxAverage( $arr , $n , $k );
?>
|
Javascript
<script>
function findMaxAverage(arr, n, k)
{
if (k > n)
return -1;
let sum = arr[0];
for (let i = 1; i < k; i++)
sum += arr[i];
let max_sum = sum;
let max_end = k-1;
for (let i = k; i < n; i++)
{
sum = sum + arr[i] - arr[i-k];
if (sum > max_sum)
{
max_sum = sum;
max_end = i;
}
}
return max_end - k + 1;
}
let arr = [1, 12, -5, -6, 50, 3];
let k = 4;
let n = arr.length;
document.write( "The maximum "
+ "average subarray of length "
+ k + " begins at index "
+ findMaxAverage(arr, n, k));
</script>
|
OutputThe maximum average subarray of length 4 begins at index 1
Time Complexity: O(n), as we are using a loop to traverse n times. Where n is the number of elements in the array.
Auxiliary Space: O(1), as we are not using any extra space.
Approach#3: Using sliding window
We can use a sliding window approach to solve this problem, which reduces the time complexity to O(n). We can start by calculating the sum of the first k elements and then move the window one element at a time, subtracting the element that is no longer in the window and adding the new element that is now in the window
Algorithm
1. Initialize a variable max_sum to the sum of the first k elements and max_index to 0.
2. Initialize a variable window_sum to max_sum.
3. Loop through the array from index k to n-1:
a. Subtract the element that is no longer in the window from window_sum.
b. Add the new element that is now in the window to window_sum.
c. If window_sum is greater than max_sum, update max_sum to window_sum and max_index to the starting index of the current window.
4. Return max_index.
Python3
def max_avg_subarray(arr, k):
n = len (arr)
window_sum = sum (arr[:k])
max_sum = window_sum
max_index = 0
for i in range (k, n):
window_sum + = arr[i] - arr[i - k]
if window_sum > max_sum:
max_sum = window_sum
max_index = i - k + 1
return max_index
arr = [ 1 , 12 , - 5 , - 6 , 50 , 3 ]
k = 4
print (max_avg_subarray(arr, k))
|
Javascript
function max_avg_subarray(arr, k) {
let n = arr.length;
let window_sum = arr.slice(0, k).reduce((a, b) => a + b, 0);
let max_sum = window_sum;
let max_index = 0;
for (let i = k; i < n; i++) {
window_sum += arr[i] - arr[i - k];
if (window_sum > max_sum) {
max_sum = window_sum;
max_index = i - k + 1;
}
}
return max_index;
}
let arr = [1, 12, -5, -6, 50, 3];
let k = 4;
console.log(max_avg_subarray(arr, k));
|
Time complexity: O(n) , where n is length of array
Auxiliary Space is O(1).
Please Login to comment...