Given a Binary Tree having positive and negative nodes, the task is to find maximum sum level in it.

Examples:

Input : 4 / \ 2 -5 / \ /\ -1 3 -2 6 Output: 6 Explanation : Sum of all nodes of 0'th level is 4 Sum of all nodes of 1'th level is -3 Sum of all nodes of 0'th level is 6 Hence maximum sum is 6 Input : 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 Output : 17

This problem is a variation of maximum width problem. The idea is to do level order traversal of tree. While doing traversal, process nodes of different level separately. For every level being processed, compute sum of nodes in the level and keep track of maximum sum.

// A queue based C++ program to find maximum sum // of a level in Binary Tree #include<bits/stdc++.h> using namespace std ; /* A binary tree node has data, pointer to left child and a pointer to right child */ struct Node { int data ; struct Node * left, * right ; }; // Function to find the maximum sum of a level in tree // using level order traversal int maxLevelSum(struct Node * root) { // Base case if (root == NULL) return 0; // Initialize result int result = root->data; // Do Level order traversal keeping track of number // of nodes at every level. queue<Node*> q; q.push(root); while (!q.empty()) { // Get the size of queue when the level order // traversal for one level finishes int count = q.size() ; // Iterate for all the nodes in the queue currently int sum = 0; while (count--) { // Dequeue an node from queue Node *temp = q.front(); q.pop(); // Add this node's value to current sum. sum = sum + temp->data; // Enqueue left and right children of // dequeued node if (temp->left != NULL) q.push(temp->left); if (temp->right != NULL) q.push(temp->right); } // Update the maximum node count value result = max(sum, result); } return result; } /* Helper function that allocates a new node with the given data and NULL left and right pointers. */ struct Node * newNode(int data) { struct Node * node = new Node; node->data = data; node->left = node->right = NULL; return (node); } int main() { struct Node *root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->left = newNode(4); root->left->right = newNode(5); root->right->right = newNode(8); root->right->right->left = newNode(6); root->right->right->right = newNode(7); /* Constructed Binary tree is: 1 / \ 2 3 / \ \ 4 5 8 / \ 6 7 */ cout << "Maximum level sum is " << maxLevelSum(root) << endl; return 0; }

Output :

Maximum level sum is 17

Time Complexity : O(n)

Auxiliary Space : O(n)

This article is contributed by **Shashank Mishra ( Gullu )**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.