Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find largest sum of digits in all divisors of n

  • Last Updated : 06 Apr, 2021

Given a integer number n, find largest sum of digits in all divisors of n.
Examples : 
 

Input : n = 12 
Output : 6
Explanation:
The divisors are: 1 2 3 4 6 12.
6 is maximum sum among all divisors

Input : n = 68
Output : 14
Explanation: 
The divisors are: 1 2 4 68
68 consists of maximum sum of digit

 

Hey! Looking for some great resources suitable for young ones? You've come to the right place. Check out our self-paced courses designed for students of grades I-XII

Start with topics like Python, HTML, ML, and learn to make some games and apps all with the help of our expertly designed content! So students worry no more, because GeeksforGeeks School is now here!

 



Naive approach: 
The idea is simple, we find all divisors of a number one by one. For every divisor, we compute sum of digits. Finally, we return largest sum of digits.
Time Complexity: O(n log n)
Below is the implementation of above approach: 
 

CPP




// CPP program to find maximum 
// sum of digits in all divisors
// of n numbers.
#include <bits/stdc++.h>
using namespace std;
 
// Function to get sum of digits
int getSum(int n)
{
int sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = n/10;
}
return sum;
}
 
// returns maximum sum
int largestDigitSumdivisior(int n)
{
    int res = 0;
    for (int i = 1; i <= n; i++)
 
        // if i is factor of n
        // then push the divisor
        // in the stack.
        if (n % i == 0)
        res = max(res, getSum(i));
 
    return res;
}
 
// Driver Code
int main()
{
    int n = 14;
    cout << largestDigitSumdivisior(n)
         << endl;
    return 0;
}

Java




// Java program to find maximum
// sum of digits in all divisors
// of n numbers.
import java.util.*;
import java.lang.*;
 
class GfG
{
     
    // Function to get
    // sum of digits
    public static int getSum(int n)
    {
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n/10;
        }
        return sum;
    }
 
    // returns maximum sum
    public static int largestDigitSumdivisior(int n)
    {
        int res = 0;
        for (int i = 1; i <= n; i++)
 
            // if i is factor of n 
            // then push the divisor
            // in the stack.
            if (n % i == 0)
            res = Math.max(res, getSum(i));
 
        return res;
    }
     
    // Driver Code
    public static void main(String argc[]){
        int n = 14;
         
        System.out.println(largestDigitSumdivisior(n));
    }
     
}
// This code is contributed
// by Sagar Shukla

Python3




# Python3 code to find
# maximum sum of digits
# in all divisors of n numbers.
 
# Function to get sum of digits
def getSum( n ):
    sum = 0
    while n != 0:
        sum = sum + n % 10
        n = int( n / 10 )
    return sum
 
# returns maximum sum
def largestDigitSumdivisior( n ):
    res = 0
    for i in range(1, n + 1):
 
        # if i is factor of n
        # then push the divisor
        # in the stack.
        if n % i == 0:
            res = max(res, getSum(i))
 
    return res
 
 
# Driver Code
n = 14
print(largestDigitSumdivisior(n) )
 
# This code is contributed
# by "Sharad_Bhardwaj".

C#




// C# program to find maximum
// sum of digits in all
// divisors of n numbers.
using System;
 
class GfG
{
     
    // Function to get
    // sum of digits
    public static int getSum(int n)
    {
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
        return sum;
    }
 
    // returns maximum sum
    public static int largestDigitSumdivisior(int n)
    {
        int res = 0;
        for (int i = 1; i <= n; i++)
 
            // if i is factor of n
            // then push the divisor
            // in the stack.
            if (n % i == 0)
            res = Math.Max(res, getSum(i));
 
        return res;
    }
     
    // Driver Code
    public static void Main()
    {
        int n = 14;
         
        Console.WriteLine(largestDigitSumdivisior(n));
    }
     
}
 
// This code is contributed by vt_m

PHP




<?php
// PHP program to find maximum
// sum of digits in all
// divisors of n numbers.
 
// Function to get
// sum of digits
function getSum( $n)
{
    $sum = 0;
    while ($n != 0)
{
    $sum = $sum + $n % 10;
    $n = $n/10;
}
return $sum;
}
 
// returns maximum sum
function largestDigitSumdivisior( $n)
{
    $res = 0;
    for ($i = 1; $i <= $n; $i++)
 
        // if i is factor of n then
        // push the divisor in
        // the stack.
        if ($n % $i == 0)
        $res = max($res, getSum($i));
 
    return $res;
}
 
    // Driver Code
    $n = 14;
    echo largestDigitSumdivisior($n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
// Javascript program to find maximum
// sum of digits in all divisors
// of n numbers.
 
// Function to get sum of digits
function getSum(n)
{
let sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = Math.floor(n/10);
}
return sum;
}
 
// returns maximum sum
function largestDigitSumdivisior(n)
{
    let res = 0;
    for (let i = 1; i <= n; i++)
 
        // if i is factor of n
        // then push the divisor
        // in the stack.
        if (n % i == 0)
        res = Math.max(res, getSum(i));
 
    return res;
}
 
// Driver Code
 
    let n = 14;
    document.write(largestDigitSumdivisior(n)
        + "<br>");
 
// This code is contributed by Mayank Tyagi
 
</script>

Output : 
 

7

An efficient approach will be to find the divisors in O(sqrt n). We follow the same steps as above , just iterate till sqrt(n) and get i and n/i as their divisors whenever n%i==0.
Below is the implementation of the above approach:
 

CPP




// CPP program to find
// maximum sum of digits
// in all divisors of n
// numbers.
#include <bits/stdc++.h>
using namespace std;
 
// Function to get
// sum of digits
int getSum(int n)
{
int sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = n / 10;
}
return sum;
}
 
// returns maximum sum
int largestDigitSumdivisior(int n)
{
    int res = 0;
     
    // traverse till sqrt(n)
    for (int i = 1; i <= sqrt(n); i++)
 
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if (n % i == 0)
        {
            // check for both the divisors
            res = max(res, getSum(i));
            res = max(res,getSum(n / i));
        }    
 
    return res;
}
 
// Driver Code
int main()
{
    int n = 14;
    cout << largestDigitSumdivisior(n)
         << endl;
    return 0;
}

Java




// Java program to find maximum
// sum of digits in all divisors
// of n numbers.
 
import java.io.*;
import java.math.*;
 
class GFG
{
 
    // Function to get
    // sum of digits
    static int getSum(int n)
    {
        int sum = 0;
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
        return sum;
    }
 
    // returns maximum sum
    static int largestDigitSumdivisior(int n)
    {
        int res = 0;
 
        // traverse till sqrt(n)
        for (int i = 1; i <= Math.sqrt(n); i++)
        {
 
            // if i is factor of
            // n then push the
            // divisor in the stack.
            if (n % i == 0)
            {
                 
                // check for both the divisors
                res = Math.max(res, getSum(i));
                res = Math.max(res, getSum(n / i));
            }
 
        }
         
        return res;
    }
 
    // Driver Code
    public static void main(String args[])
    {
        int n = 14;
        System.out.println(largestDigitSumdivisior(n));
    }
}
 
// This code is contributed
// by Nikita Tiwari

Python3




# Python 3 program
# to find maximum
# sum of digits in
# all divisors of
# n numbers
import math
 
# Function to get
# sum of digits
def getSum(n) :
    sm = 0
    while (n != 0) :
        sm = sm + n % 10
        n = n // 10
         
    return sm
     
     
# returns maximum sum
def largestDigitSumdivisior(n) :
    res = 0
     
    # traverse till sqrt(n)
    for i in range(1, (int)(math.sqrt(n))+1) :
         
        # if i is factor of n then
        # push the divisor in the
        # stack.
        if (n % i == 0) :
 
            # check for both the
            # divisors
            res = max(res, getSum(i))
            res = max(res, getSum(n // i))
             
    return res
 
# Driver Code
n = 14
print(largestDigitSumdivisior(n))
 
#This code is contributed
# by Nikita Tiwari

C#




// C# program to find maximum sum
// of digits in all divisors of n
// numbers.
using System;
 
class GFG
{
 
    // Function to get
    // sum of digits
    static int getSum(int n)
    {
        int sum = 0;
         
        while (n != 0)
        {
            sum = sum + n % 10;
            n = n / 10;
        }
         
        return sum;
    }
 
    // returns maximum sum
    static int largestDigitSumdivisior(int n)
    {
        int res = 0;
 
        // traverse till sqrt(n)
        for (int i = 1; i <= Math.Sqrt(n); i++)
        {
 
            // if i is factor of n then push the
            // divisor in the stack.
            if (n % i == 0)
            {
                 
                // check for both the divisors
                res = Math.Max(res, getSum(i));
                res = Math.Max(res, getSum(n / i));
            }
 
        }
         
        return res;
    }
 
    // Driver Code
    public static void Main()
    {
        int n = 14;
         
        Console.WriteLine(largestDigitSumdivisior(n));
    }
}
 
// This code is contributed by Vt_m

PHP




<?php
// PHP program to find maximum
// sum of digits in all
// divisors of n numbers
 
// Function to get
// sum of digits
function getSum($n)
{
    $sum = 0;
while ($n != 0)
{
    $sum = $sum + $n % 10;
    $n = $n / 10;
}
return $sum;
}
 
// returns maximum sum
function largestDigitSumdivisior( $n)
{
    $res = 0;
     
    // traverse till sqrt(n)
    for ($i = 1; $i <= sqrt($n); $i++)
 
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if ($n % $i == 0)
        {
            // check for both the divisors
            $res = max($res, getSum($i));
            $res = max($res, getSum($n / $i));
        }
 
    return $res;
}
 
// Driver Code
$n = 14;
echo largestDigitSumdivisior($n);
 
// This code is contributed by anuj_67.
?>

Javascript




<script>
 
// JavaScript program to find
// maximum sum of digits
// in all divisors of n
// numbers.
 
// Function to get
// sum of digits
function getSum(n)
{
var sum = 0;
while (n != 0)
{
    sum = sum + n % 10;
    n = parseInt(n / 10);
}
return sum;
}
 
// returns maximum sum
function largestDigitSumdivisior(n)
{
    var res = 0;
     
    // traverse till sqrt(n)
    for (var i = 1; i <= Math.sqrt(n); i++)
 
        // if i is factor of
        // n then push the
        // divisor in the stack.
        if (n % i == 0)
        {
            // check for both the divisors
            res = Math.max(res, getSum(i));
            res = Math.max(res,getSum(n / i));
        }   
 
    return res;
}
 
// Driver Code
var n = 14;
document.write(largestDigitSumdivisior(n));
 
</script>

Output : 

7

Time Complexity: O(sqrt(n) log n)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!