Find k-th smallest element in given n ranges

Given n and q, i.e, the number of ranges and number of queries, find the kth smallest element for each query (assume k>1).Print the value of kth smallest element if it exists, else print -1.

Examples :

Input : arr[] = {{1, 4}, {6, 8}}
        queries[] = {2, 6, 10};
Output : 2
         7
        -1
After combining the given ranges, the numbers
become 1 2 3 4 6 7 8. As here 2nd element is 2,
so we print 2. As 6th element is 7, so we print
7 and as 10th element doesn't exist, so we
print -1.

Input : arr[] = {{2, 6}, {5, 7}}
        queries[] = {5, 8};
Output : 6
        -1
After combining the given ranges, the numbers 
become 2 3 4 5 6 7. As here 5th element is 6, 
so we print 6 and as 8th element doesn't exist, 
so we print -1.

The idea is to first Prerequisite : Merge Overlapping Intervals and keep all intervals sorted in ascending order of start time. After merging in an array merged[], we use linear search to find kth smallest element. Below is the implementation of the above approach :

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to solve k queries
// for given n ranges
#include <bits/stdc++.h>
using namespace std;
  
// Structure to store the
// start and end point
struct Interval
{
    int s;
    int e;
};
  
// Comparison function for sorting
bool comp(Interval a, Interval b)
{
    return a.s < b.s;
}
  
// Function to find Kth smallest number in a vector
// of merged intervals
int kthSmallestNum(vector<Interval> merged, int k)
{
    int n = merged.size();
  
    // Traverse merged[] to find
    // Kth smallest element using Linear search.
    for (int j = 0; j < n; j++)
    {
        if (k <= abs(merged[j].e -
                     merged[j].s + 1))
            return (merged[j].s + k - 1);
  
        k = k - abs(merged[j].e -
                     merged[j].s + 1);
    }
  
    if (k)
        return -1;
}
  
// To combined both type of ranges,
// overlapping as well as non-overlapping.
void mergeIntervals(vector<Interval> &merged,
                 Interval arr[], int n)
{
    // Sorting intervals according to start
    // time
    sort(arr, arr + n, comp);
  
    // Merging all intervals into merged
    merged.push_back(arr[0]);
    for (int i = 1; i < n; i++)
    {
        // To check if starting point of next
        // range is lying between the previous
        // range and ending point of next range
        // is greater than the Ending point
        // of previous range then update ending
        // point of previous range by ending
        // point of next range.
        Interval prev = merged.back();
        Interval curr = arr[i];
        if ((curr.s >= prev.s &&
             curr.s <= prev.e) &&
            (curr.e > prev.e))
  
            merged.back().e = curr.e;
  
        else
        {
            // If starting point of next range
            // is greater than the ending point
            // of previous range then store next range
            // in merged[].
            if (curr.s > prev.e)
                merged.push_back(curr);
        }
    }
}
  
// Driver\'s Function
int main()
{
    Interval arr[] = {{2, 6}, {4, 7}};
    int n = sizeof(arr)/sizeof(arr[0]);
    int query[] = {5, 8};
    int q = sizeof(query)/sizeof(query[0]);
  
    // Merge all intervals into merged[]
    vector<Interval>merged;
    mergeIntervals(merged, arr, n);
  
    // Processing all queries on merged
    // intervals
    for (int i = 0; i < q; i++)
        cout << kthSmallestNum(merged, query[i])
             << endl;
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to solve k queries
// for given n ranges
import java.util.*;
  
class GFG
{
  
// Structure to store the
// start and end point
static class Interval
{
    int s;
    int e;
    Interval(int a,int b)
    {
        s = a;
        e = b;
    }
};
static class Sortby implements Comparator<Interval> 
    // Comparison function for sorting
    public int compare(Interval a, Interval b)
    {
        return a.s - b.s;
    }
  
// Function to find Kth smallest number in a Vector
// of merged intervals
static int kthSmallestNum(Vector<Interval> merged, int k)
{
    int n = merged.size();
  
    // Traverse merged.get( )o find
    // Kth smallest element using Linear search.
    for (int j = 0; j < n; j++)
    {
        if (k <= Math.abs(merged.get(j).e -
                    merged.get(j).s + 1))
            return (merged.get(j).s + k - 1);
  
        k = k - Math.abs(merged.get(j).e -
                    merged.get(j).s + 1);
    }
  
    if (k != 0)
        return -1;
    return 0;
}
  
// To combined both type of ranges,
// overlapping as well as non-overlapping.
static Vector<Interval> mergeIntervals(Vector<Interval> merged,
                Interval arr[], int n)
{
    // Sorting intervals according to start
    // time
    Arrays.sort(arr, new Sortby());
  
    // Merging all intervals into merged
    merged.add(arr[0]);
    for (int i = 1; i < n; i++)
    {
        // To check if starting point of next
        // range is lying between the previous
        // range and ending point of next range
        // is greater than the Ending point
        // of previous range then update ending
        // point of previous range by ending
        // point of next range.
        Interval prev = merged.get(merged.size() - 1);
        Interval curr = arr[i];
        if ((curr.s >= prev.s &&
            curr.s <= prev.e) &&
            (curr.e > prev.e))
  
            merged.get(merged.size()-1).e = curr.e;
  
        else
        {
            // If starting point of next range
            // is greater than the ending point
            // of previous range then store next range
            // in merged.get(.)         if (curr.s > prev.e)
                merged.add(curr);
        }
    }
    return merged;
}
  
// Driver code
public static void main(String args[])
{
    Interval arr[] = {new Interval(2, 6), new Interval(4, 7)};
    int n = arr.length;
    int query[] = {5, 8};
    int q = query.length;
  
    // Merge all intervals into merged.get()) 
    Vector<Interval> merged = new Vector<Interval>();
    merged=mergeIntervals(merged, arr, n);
  
    // Processing all queries on merged
    // intervals
    for (int i = 0; i < q; i++)
        System.out.println( kthSmallestNum(merged, query[i]));
}
}
  
// This code is contributed by Arnab Kundu

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python implementation to solve k queries
# for given n ranges
  
# Structure to store the
# start and end point
class Interval:
    def __init__(self, s, e):
        self.s = s
        self.e = e
  
# Function to find Kth smallest number in a vector
# of merged intervals
def kthSmallestNum(merged: list, k: int) -> int:
    n = len(merged)
  
    # Traverse merged[] to find
    # Kth smallest element using Linear search.
    for j in range(n):
        if k <= abs(merged[j].e - merged[j].s + 1):
            return merged[j].s + k - 1
  
        k = k - abs(merged[j].e - merged[j].s + 1)
  
    if k:
        return -1
  
# To combined both type of ranges,
# overlapping as well as non-overlapping.
def mergeIntervals(merged: list, arr: list, n: int):
  
    # Sorting intervals according to start
    # time
    arr.sort(key = lambda a: a.s)
  
    # Merging all intervals into merged
    merged.append(arr[0])
    for i in range(1, n):
  
        # To check if starting point of next
        # range is lying between the previous
        # range and ending point of next range
        # is greater than the Ending point
        # of previous range then update ending
        # point of previous range by ending
        # point of next range.
        prev = merged[-1]
        curr = arr[i]
        if curr.s >= prev.s and curr.s <= prev.e and\
          curr.e > prev.e:
            merged[-1].e = curr.e
        else:
  
            # If starting point of next range
            # is greater than the ending point
            # of previous range then store next range
            # in merged[].
            if curr.s > prev.e:
                merged.append(curr)
  
# Driver Code
if __name__ == "__main__":
  
    arr = [Interval(2, 6), Interval(4, 7)]
    n = len(arr)
    query = [5, 8]
    q = len(query)
  
    # Merge all intervals into merged[]
    merged = []
    mergeIntervals(merged, arr, n)
  
    # Processing all queries on merged
    # intervals
    for i in range(q):
        print(kthSmallestNum(merged, query[i]))
  
# This code is contributed by
# sanjeev2552

chevron_right



Output:

 6
 -1

Time Complexity : O(nlog(n))

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : sanjeev2552, andrew1234