Skip to content
Related Articles

Related Articles

Improve Article
Find k-th smallest element in given n ranges
  • Difficulty Level : Medium
  • Last Updated : 02 Mar, 2021

Given n and q, i.e, the number of ranges and number of queries, find the kth smallest element for each query (assume k>1).Print the value of kth smallest element if it exists, else print -1.

Examples : 

Input : arr[] = {{1, 4}, {6, 8}}
        queries[] = {2, 6, 10};
Output : 2
         7
        -1
After combining the given ranges, the numbers
become 1 2 3 4 6 7 8. As here 2nd element is 2,
so we print 2. As 6th element is 7, so we print
7 and as 10th element doesn't exist, so we
print -1.

Input : arr[] = {{2, 6}, {5, 7}}
        queries[] = {5, 8};
Output : 6
        -1
After combining the given ranges, the numbers 
become 2 3 4 5 6 7. As here 5th element is 6, 
so we print 6 and as 8th element doesn't exist, 
so we print -1.

The idea is to first Prerequisite : Merge Overlapping Intervals and keep all intervals sorted in ascending order of start time. After merging in an array merged[], we use linear search to find kth smallest element.

 Below is the implementation of the above approach :  

C++




// C++ implementation to solve k queries
// for given n ranges
#include <bits/stdc++.h>
using namespace std;
 
// Structure to store the
// start and end point
struct Interval
{
    int s;
    int e;
};
 
// Comparison function for sorting
bool comp(Interval a, Interval b)
{
    return a.s < b.s;
}
 
// Function to find Kth smallest number in a vector
// of merged intervals
int kthSmallestNum(vector<Interval> merged, int k)
{
    int n = merged.size();
 
    // Traverse merged[] to find
    // Kth smallest element using Linear search.
    for (int j = 0; j < n; j++)
    {
        if (k <= abs(merged[j].e -
                     merged[j].s + 1))
            return (merged[j].s + k - 1);
 
        k = k - abs(merged[j].e -
                     merged[j].s + 1);
    }
 
    if (k)
        return -1;
}
 
// To combined both type of ranges,
// overlapping as well as non-overlapping.
void mergeIntervals(vector<Interval> &merged,
                 Interval arr[], int n)
{
    // Sorting intervals according to start
    // time
    sort(arr, arr + n, comp);
 
    // Merging all intervals into merged
    merged.push_back(arr[0]);
    for (int i = 1; i < n; i++)
    {
        // To check if starting point of next
        // range is lying between the previous
        // range and ending point of next range
        // is greater than the Ending point
        // of previous range then update ending
        // point of previous range by ending
        // point of next range.
        Interval prev = merged.back();
        Interval curr = arr[i];
        if ((curr.s >= prev.s &&
             curr.s <= prev.e) &&
            (curr.e > prev.e))
 
            merged.back().e = curr.e;
 
        else
        {
            // If starting point of next range
            // is greater than the ending point
            // of previous range then store next range
            // in merged[].
            if (curr.s > prev.e)
                merged.push_back(curr);
        }
    }
}
 
// Driver\'s Function
int main()
{
    Interval arr[] = {{2, 6}, {4, 7}};
    int n = sizeof(arr)/sizeof(arr[0]);
    int query[] = {5, 8};
    int q = sizeof(query)/sizeof(query[0]);
 
    // Merge all intervals into merged[]
    vector<Interval>merged;
    mergeIntervals(merged, arr, n);
 
    // Processing all queries on merged
    // intervals
    for (int i = 0; i < q; i++)
        cout << kthSmallestNum(merged, query[i])
             << endl;
 
    return 0;
}

Java




// Java implementation to solve k queries
// for given n ranges
import java.util.*;
 
class GFG
{
 
// Structure to store the
// start and end point
static class Interval
{
    int s;
    int e;
    Interval(int a,int b)
    {
        s = a;
        e = b;
    }
};
static class Sortby implements Comparator<Interval>
{
    // Comparison function for sorting
    public int compare(Interval a, Interval b)
    {
        return a.s - b.s;
    }
}
 
// Function to find Kth smallest number in a Vector
// of merged intervals
static int kthSmallestNum(Vector<Interval> merged, int k)
{
    int n = merged.size();
 
    // Traverse merged.get( )o find
    // Kth smallest element using Linear search.
    for (int j = 0; j < n; j++)
    {
        if (k <= Math.abs(merged.get(j).e -
                    merged.get(j).s + 1))
            return (merged.get(j).s + k - 1);
 
        k = k - Math.abs(merged.get(j).e -
                    merged.get(j).s + 1);
    }
 
    if (k != 0)
        return -1;
    return 0;
}
 
// To combined both type of ranges,
// overlapping as well as non-overlapping.
static Vector<Interval> mergeIntervals(Vector<Interval> merged,
                Interval arr[], int n)
{
    // Sorting intervals according to start
    // time
    Arrays.sort(arr, new Sortby());
 
    // Merging all intervals into merged
    merged.add(arr[0]);
    for (int i = 1; i < n; i++)
    {
        // To check if starting point of next
        // range is lying between the previous
        // range and ending point of next range
        // is greater than the Ending point
        // of previous range then update ending
        // point of previous range by ending
        // point of next range.
        Interval prev = merged.get(merged.size() - 1);
        Interval curr = arr[i];
        if ((curr.s >= prev.s &&
            curr.s <= prev.e) &&
            (curr.e > prev.e))
 
            merged.get(merged.size()-1).e = curr.e;
 
        else
        {
            // If starting point of next range
            // is greater than the ending point
            // of previous range then store next range
            // in merged.get(.)         if (curr.s > prev.e)
                merged.add(curr);
        }
    }
    return merged;
}
 
// Driver code
public static void main(String args[])
{
    Interval arr[] = {new Interval(2, 6), new Interval(4, 7)};
    int n = arr.length;
    int query[] = {5, 8};
    int q = query.length;
 
    // Merge all intervals into merged.get())
    Vector<Interval> merged = new Vector<Interval>();
    merged=mergeIntervals(merged, arr, n);
 
    // Processing all queries on merged
    // intervals
    for (int i = 0; i < q; i++)
        System.out.println( kthSmallestNum(merged, query[i]));
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python3 implementation to solve k queries
# for given n ranges
 
# Structure to store the
# start and end point
class Interval:
    def __init__(self, s, e):
        self.s = s
        self.e = e
 
# Function to find Kth smallest number in a vector
# of merged intervals
def kthSmallestNum(merged: list, k: int) -> int:
    n = len(merged)
 
    # Traverse merged[] to find
    # Kth smallest element using Linear search.
    for j in range(n):
        if k <= abs(merged[j].e - merged[j].s + 1):
            return merged[j].s + k - 1
 
        k = k - abs(merged[j].e - merged[j].s + 1)
 
    if k:
        return -1
 
# To combined both type of ranges,
# overlapping as well as non-overlapping.
def mergeIntervals(merged: list, arr: list, n: int):
 
    # Sorting intervals according to start
    # time
    arr.sort(key = lambda a: a.s)
 
    # Merging all intervals into merged
    merged.append(arr[0])
    for i in range(1, n):
 
        # To check if starting point of next
        # range is lying between the previous
        # range and ending point of next range
        # is greater than the Ending point
        # of previous range then update ending
        # point of previous range by ending
        # point of next range.
        prev = merged[-1]
        curr = arr[i]
        if curr.s >= prev.s and curr.s <= prev.e and\
          curr.e > prev.e:
            merged[-1].e = curr.e
        else:
 
            # If starting point of next range
            # is greater than the ending point
            # of previous range then store next range
            # in merged[].
            if curr.s > prev.e:
                merged.append(curr)
 
# Driver Code
if __name__ == "__main__":
 
    arr = [Interval(2, 6), Interval(4, 7)]
    n = len(arr)
    query = [5, 8]
    q = len(query)
 
    # Merge all intervals into merged[]
    merged = []
    mergeIntervals(merged, arr, n)
 
    # Processing all queries on merged
    # intervals
    for i in range(q):
        print(kthSmallestNum(merged, query[i]))
 
# This code is contributed by
# sanjeev2552

C#




// C# implementation to solve k queries
// for given n ranges
using System;
using System.Collections;
using System.Collections.Generic;
  
class GFG{
  
// Structure to store the
// start and end point
public class Interval
{
    public int s;
    public int e;
     
    public Interval(int a, int b)
    {
        s = a;
        e = b;
    }
};
 
class sortHelper : IComparer
{
    int IComparer.Compare(object a, object b)
    {
        Interval first = (Interval)a;
        Interval second = (Interval)b;
        return first.s - second.s;
    }
}
 
// Function to find Kth smallest number in
// a Vector of merged intervals
static int kthSmallestNum(ArrayList merged, int k)
{
    int n = merged.Count;
     
    // Traverse merged.get( )o find
    // Kth smallest element using Linear search.
    for(int j = 0; j < n; j++)
    {
        if (k <= Math.Abs(((Interval)merged[j]).e -
                          ((Interval)merged[j]).s + 1))
            return (((Interval)merged[j]).s + k - 1);
  
        k = k - Math.Abs(((Interval)merged[j]).e -
                         ((Interval)merged[j]).s + 1);
    }
  
    if (k != 0)
        return -1;
         
    return 0;
}
  
// To combined both type of ranges,
// overlapping as well as non-overlapping.
static ArrayList mergeIntervals(ArrayList merged,
                                Interval []arr, int n)
{
     
    // Sorting intervals according to start
    // time
    Array.Sort(arr, new sortHelper());
     
    // Merging all intervals into merged
    merged.Add((Interval)arr[0]);
     
    for(int i = 1; i < n; i++)
    {
         
        // To check if starting point of next
        // range is lying between the previous
        // range and ending point of next range
        // is greater than the Ending point
        // of previous range then update ending
        // point of previous range by ending
        // point of next range.
        Interval prev = (Interval)merged[merged.Count - 1];
        Interval curr = arr[i];
         
        if ((curr.s >= prev.s && curr.s <= prev.e) &&
            (curr.e > prev.e))
        {
            ((Interval)merged[merged.Count - 1]).e = ((Interval)curr).e;
        }
        else
        {
             
            // If starting point of next range
            // is greater than the ending point
            // of previous range then store next range
            // in merged.get(.) if (curr.s > prev.e)
            merged.Add(curr);
        }
    }
    return merged;
}
  
// Driver code
public static void Main(string []args)
{
    Interval []arr = { new Interval(2, 6),
                       new Interval(4, 7) };
    int n = arr.Length;
    int []query = { 5, 8 };
    int q = query.Length;
     
    // Merge all intervals into merged.get())
    ArrayList merged = new ArrayList();
     
    merged = mergeIntervals(merged, arr, n);
     
    // Processing all queries on merged
    // intervals
    for(int i = 0; i < q; i++)
        Console.WriteLine(kthSmallestNum(
            merged, query[i]));
}
}
 
// This code is contributed by pratham76

Output: 



 6
 -1

Time Complexity : O(nlog(n)) 
 Auxiliary Space: O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live




My Personal Notes arrow_drop_up
Recommended Articles
Page :