Find k-th smallest element in BST (Order Statistics in BST)
Given the root of a binary search tree and K as input, find Kth smallest element in BST.
For example, in the following BST, if k = 3, then the output should be 10, and if k = 5, then the output should be 14.
Method 1: Using Inorder Traversal (O(n) time and O(h) auxiliary space)
The Inorder Traversal of a BST traverses the nodes in increasing order. So the idea is to traverse the tree in Inorder. While traversing, keep track of the count of the nodes visited. If the count becomes k, print the node.
C++
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <iostream> using namespace std; // A BST node struct Node { int data; Node *left, *right; Node( int x) { data = x; left = right = NULL; } }; // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new Node(x); if (x < root->data) root->left = insert(root->left, x); else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far int count = 0; Node* kthSmallest(Node* root, int & k) { // base case if (root == NULL) return NULL; // search in left subtree Node* left = kthSmallest(root->left, k); // if k'th smallest is found in left subtree, return it if (left != NULL) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root->right, k); } // Function to print k'th smallest element in BST void printKthSmallest(Node* root, int k) { // maintain index to count number of nodes processed so far Node* res = kthSmallest(root, k); if (res == NULL) cout << "There are less than k nodes in the BST" ; else cout << "K-th Smallest Element is " << res->data; } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for ( int x : keys) root = insert(root, x); int k = 3; printKthSmallest(root, k); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <stdio.h> #include <stdlib.h> // A BST node typedef struct Node { int data; struct Node *left, *right; } Node; struct Node* new_node( int x) { struct Node* p = malloc ( sizeof ( struct Node)); p->data = x; p->left = NULL; p->right = NULL; return p; } // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new_node(x); if (x < root->data) root->left = insert(root->left, x); else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far int count = 0; Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; // search in left subtree Node* left = kthSmallest(root->left, k); // if k'th smallest is found in left subtree, return it if (left != NULL) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root->right, k); } // Function to print k'th smallest element in BST void printKthSmallest(Node* root, int k) { // maintain index to count number of nodes processed so far Node* res = kthSmallest(root, k); if (res == NULL) printf ( "There are less than k nodes in the BST" ); else printf ( "K-th Smallest Element is %d" , res->data); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; int keys_size = sizeof (keys) / sizeof (keys[0]); for ( int i = 0; i < keys_size; i++) root = insert(root, keys[i]); int k = 3; printKthSmallest(root, k); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// A simple inorder traversal based Java program // to find k-th smallest element in a BST. import java.io.*; // A BST node class Node { int data; Node left, right; Node( int x) { data = x; left = right = null ; } } class GFG { static int count = 0 ; // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null ) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number of nodes processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null ) return null ; // search in left subtree Node left = kthSmallest(root.left, k); // if k'th smallest is found in left subtree, return it if (left != null ) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest element in BST public static void printKthSmallest(Node root, int k) { Node res = kthSmallest(root, k); if (res == null ) System.out.println( "There are less than k nodes in the BST" ); else System.out.println( "K-th Smallest Element is " + res.data); } public static void main(String[] args) { Node root = null ; int keys[] = { 20 , 8 , 22 , 4 , 12 , 10 , 14 }; for ( int x : keys) root = insert(root, x); int k = 3 ; printKthSmallest(root, k); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# A simple inorder traversal based Python3 # program to find k-th smallest element # in a BST. # A BST node class Node: def __init__( self , key): self .data = key self .left = None self .right = None # Recursive function to insert an key into BST def insert(root, x): if (root = = None ): return Node(x) if (x < root.data): root.left = insert(root.left, x) elif (x > root.data): root.right = insert(root.right, x) return root # Function to find k'th largest element # in BST. Here count denotes the number # of nodes processed so far def kthSmallest(root): global k # Base case if (root = = None ): return None # Search in left subtree left = kthSmallest(root.left) # If k'th smallest is found in # left subtree, return it if (left ! = None ): return left # If current element is k'th # smallest, return it k - = 1 if (k = = 0 ): return root # Else search in right subtree return kthSmallest(root.right) # Function to find k'th largest element in BST def printKthSmallest(root): # Maintain index to count number # of nodes processed so far count = 0 res = kthSmallest(root) if (res = = None ): print ( "There are less than k nodes in the BST" ) else : print ( "K-th Smallest Element is " , res.data) # Driver code if __name__ = = '__main__' : root = None keys = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ] for x in keys: root = insert(root, x) k = 3 printKthSmallest(root) # This code is contributed by mohit kumar 29 |
C#
// A simple inorder traversal // based C# program to find // k-th smallest element in a BST. using System; // A BST node class Node{ public int data; public Node left, right; public Node( int x) { data = x; left = right = null ; } } class GFG{ static int count = 0; // Recursive function to // insert an key into BST public static Node insert(Node root, int x) { if (root == null ) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest // element in BST. Here count // denotes the number of nodes // processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null ) return null ; // search in left subtree Node left = kthSmallest(root.left, k); // if k'th smallest is found // in left subtree, return it if (left != null ) return left; // if current element is // k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest // element in BST public static void printKthSmallest(Node root, int k) { // Maintain an index to // count number of nodes // processed so far count = 0; Node res = kthSmallest(root, k); if (res == null ) Console.WriteLine( "There are less " + "than k nodes in the BST" ); else Console.WriteLine( "K-th Smallest" + " Element is " + res.data); } // Driver code public static void Main(String[] args) { Node root = null ; int []keys = {20, 8, 22, 4, 12, 10, 14}; foreach ( int x in keys) root = insert(root, x); int k = 3; printKthSmallest(root, k); } } // This code is contributed by gauravrajput1 |
Javascript
<script> // A simple inorder traversal based Javascript program // to find k-th smallest element in a BST. // A BST node class Node { constructor(x) { this .data = x; this .left = null ; this .right = null ; } } let count = 0; // Recursive function to insert an key into BST function insert(root,x) { if (root == null ) return new Node(x); if (x < root.data) root.left = insert(root.left, x); else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number // of nodes processed so far function kthSmallest(root,k) { // base case if (root == null ) return null ; // search in left subtree let left = kthSmallest(root.left, k); // if k'th smallest is found in left subtree, return it if (left != null ) return left; // if current element is k'th smallest, return it count++; if (count == k) return root; // else search in right subtree return kthSmallest(root.right, k); } // Function to find k'th largest element in BST function printKthSmallest(root,k) { // maintain an index to count number of // nodes processed so far count = 0; let res = kthSmallest(root, k); if (res == null ) document.write( "There are less " + "than k nodes in the BST" ); else document.write( "K-th Smallest" + " Element is " + res.data); } let root= null ; let key=[20, 8, 22, 4, 12, 10, 14 ]; for (let i=0;i<key.length;i++) { root = insert(root, key[i]); } let k = 3; printKthSmallest(root, k); // This code is contributed by unknown2108 </script> |
K-th Smallest Element is 10
We can optimize space using Morris Traversal. Please refer K’th smallest element in BST using O(1) Extra Space for details.
Method 2: Augmented Tree Data Structure (O(h) Time Complexity and O(h) auxiliary space)
The idea is to maintain the rank of each node. We can keep track of elements in the left subtree of every node while building the tree. Since we need the K-th smallest element, we can maintain the number of elements of the left subtree in every node.
Assume that the root is having ‘lCount’ nodes in its left subtree. If K = lCount + 1, root is K-th node. If K < lCount + 1, we will continue our search (recursion) for the Kth smallest element in the left subtree of root. If K > lCount + 1, we continue our search in the right subtree for the (K – lCount – 1)-th smallest element. Note that we need the count of elements in the left subtree only.
C++
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <iostream> using namespace std; // A BST node struct Node { int data; Node *left, *right; int lCount; Node( int x) { data = x; left = right = NULL; lCount = 0; } }; // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new Node(x); // If a node is inserted in left subtree, then lCount of // this node is increased. For simplicity, we are // assuming that all keys (tried to be inserted) are // distinct. if (x < root->data) { root->left = insert(root->left, x); root->lCount++; } else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; int count = root->lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root->left, k); // else search in right subtree return kthSmallest(root->right, k - count); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; for ( int x : keys) root = insert(root, x); int k = 4; Node* res = kthSmallest(root, k); if (res == NULL) cout << "There are less than k nodes in the BST" ; else cout << "K-th Smallest Element is " << res->data; return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
C
// A simple inorder traversal based C++ program to find k-th // smallest element in a BST. #include <stdio.h> #include <stdlib.h> // A BST node typedef struct Node { int data; struct Node *left, *right; int lCount; } Node; Node* new_node( int x) { Node* newNode = malloc ( sizeof (Node)); newNode->data = x; newNode->left = NULL; newNode->right = NULL; return newNode; } // Recursive function to insert an key into BST Node* insert(Node* root, int x) { if (root == NULL) return new_node(x); // If a node is inserted in left subtree, then lCount of // this node is increased. For simplicity, we are // assuming that all keys (tried to be inserted) are // distinct. if (x < root->data) { root->left = insert(root->left, x); root->lCount++; } else if (x > root->data) root->right = insert(root->right, x); return root; } // Function to find k'th smallest element in BST // Here count denotes the number of nodes processed so far Node* kthSmallest(Node* root, int k) { // base case if (root == NULL) return NULL; int count = root->lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root->left, k); // else search in right subtree return kthSmallest(root->right, k - count); } // main function int main() { Node* root = NULL; int keys[] = { 20, 8, 22, 4, 12, 10, 14 }; int keys_size = sizeof (keys) / sizeof (keys[0]); for ( int i = 0; i < keys_size; i++) root = insert(root, keys[i]); int k = 4; Node* res = kthSmallest(root, k); if (res == NULL) printf ( "There are less than k nodes in the BST" ); else printf ( "K-th Smallest Element is %d" , res->data); return 0; } // This code is contributed by Aditya Kumar (adityakumar129) |
Java
// A simple inorder traversal based Java program // to find k-th smallest element in a BST. import java.io.*; import java.util.*; // A BST node class Node { int data; Node left, right; int lCount; Node( int x) { data = x; left = right = null ; lCount = 0 ; } } class Gfg { // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null ) return new Node(x); // If a node is inserted in left subtree, then // lCount of this node is increased. For simplicity, // we are assuming that all keys (tried to be // inserted) are distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element in BST // Here count denotes the number of nodes processed so far public static Node kthSmallest(Node root, int k) { // base case if (root == null ) return null ; int count = root.lCount + 1 ; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // else search in right subtree return kthSmallest(root.right, k - count); } // main function public static void main(String args[]) { Node root = null ; int keys[] = { 20 , 8 , 22 , 4 , 12 , 10 , 14 }; for ( int x : keys) root = insert(root, x); int k = 4 ; Node res = kthSmallest(root, k); if (res == null ) System.out.println( "There are less than k nodes in the BST" ); else System.out.println( "K-th Smallest Element is " + res.data); } } // This code is contributed by Aditya Kumar (adityakumar129) |
Python3
# A simple inorder traversal based Python3 # program to find k-th smallest element in a BST. # A BST node class newNode: def __init__( self , x): self .data = x self .left = None self .right = None self .lCount = 0 # Recursive function to insert # an key into BST def insert(root, x): if (root = = None ): return newNode(x) # If a node is inserted in left subtree, # then lCount of this node is increased. # For simplicity, we are assuming that # all keys (tried to be inserted) are # distinct. if (x < root.data): root.left = insert(root.left, x) root.lCount + = 1 elif (x > root.data): root.right = insert(root.right, x); return root # Function to find k'th largest element # in BST. Here count denotes the number # of nodes processed so far def kthSmallest(root, k): # Base case if (root = = None ): return None count = root.lCount + 1 if (count = = k): return root if (count > k): return kthSmallest(root.left, k) # Else search in right subtree return kthSmallest(root.right, k - count) # Driver code if __name__ = = '__main__' : root = None keys = [ 20 , 8 , 22 , 4 , 12 , 10 , 14 ] for x in keys: root = insert(root, x) k = 4 res = kthSmallest(root, k) if (res = = None ): print ( "There are less than k nodes in the BST" ) else : print ( "K-th Smallest Element is" , res.data) # This code is contributed by bgangwar59 |
C#
// A simple inorder traversal based C# program // to find k-th smallest element in a BST. using System; // A BST node public class Node { public int data; public Node left, right; public int lCount; public Node( int x) { data = x; left = right = null ; lCount = 0; } } class GFG{ // Recursive function to insert an key into BST public static Node insert(Node root, int x) { if (root == null ) return new Node(x); // If a node is inserted in left subtree, // then lCount of this node is increased. // For simplicity, we are assuming that // all keys (tried to be inserted) are // distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element // in BST. Here count denotes the number // of nodes processed so far public static Node kthSmallest(Node root, int k) { // Base case if (root == null ) return null ; int count = root.lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // Else search in right subtree return kthSmallest(root.right, k - count); } // Driver Code public static void Main(String[] args) { Node root = null ; int [] keys = { 20, 8, 22, 4, 12, 10, 14 }; foreach ( int x in keys) root = insert(root, x); int k = 4; Node res = kthSmallest(root, k); if (res == null ) Console.WriteLine( "There are less " + "than k nodes in the BST" ); else Console.WriteLine( "K-th Smallest" + " Element is " + res.data); } } // This code is contributed by aashish1995 |
Javascript
<script> // A simple inorder traversal based // Javascript program to find k-th // smallest element in a BST. // A BST node class Node { constructor(x) { this .data = x; this .left = null ; this .right = null ; this .lCount = 0; } } // Recursive function to insert an key into BST function insert(root, x) { if (root == null ) return new Node(x); // If a node is inserted in left subtree, // then lCount of this node is increased. // For simplicity, we are assuming that // all keys (tried to be inserted) are // distinct. if (x < root.data) { root.left = insert(root.left, x); root.lCount++; } else if (x > root.data) root.right = insert(root.right, x); return root; } // Function to find k'th largest element // in BST. Here count denotes the number // of nodes processed so far function kthSmallest(root, k) { // Base case if (root == null ) return null ; let count = root.lCount + 1; if (count == k) return root; if (count > k) return kthSmallest(root.left, k); // Else search in right subtree return kthSmallest(root.right, k - count); } // Driver code let root = null ; let keys = [ 20, 8, 22, 4, 12, 10, 14 ]; for (let x = 0; x < keys.length; x++) root = insert(root, keys[x]); let k = 4; let res = kthSmallest(root, k); if (res == null ) document.write( "There are less than k " + "nodes in the BST" + "</br>" ); else document.write( "K-th Smallest" + " Element is " + res.data); // This code is contributed by divyeshrabadiya07 </script> |
K-th Smallest Element is 12
Time complexity: O(h) where h is the height of the tree.