 Open in App
Not now

# Given a Boolean Matrix, find k such that all elements in k’th row are 0 and k’th column are 1.

• Difficulty Level : Hard
• Last Updated : 08 Dec, 2022

Given a square boolean matrix mat[n][n], find k such that all elements in k’th row are 0 and all elements in k’th column are 1. The value of mat[k][k] can be anything (either 0 or 1). If no such k exists, return -1.

Examples:

```Input: bool mat[n][n] = { {1, 0, 0, 0},
{1, 1, 1, 0},
{1, 1, 0, 0},
{1, 1, 1, 0},
};
Output: 0
All elements in 0'th row are 0 and all elements in
0'th column are 1.  mat is 1 (can be any value)

Input: bool mat[n][n] = {{0, 1, 1, 0, 1},
{0, 0, 0, 0, 0},
{1, 1, 1, 0, 0},
{1, 1, 1, 1, 0},
{1, 1, 1, 1, 1}};
Output: 1
All elements in 1'st row are 0 and all elements in
1'st column are 1.  mat is 0 (can be any value)

Input: bool mat[n][n] = {{0, 1, 1, 0, 1},
{0, 0, 0, 0, 0},
{1, 1, 1, 0, 0},
{1, 0, 1, 1, 0},
{1, 1, 1, 1, 1}};
Output: -1
There is no k such that k'th row elements are 0 and
k'th column elements are 1.```

A Simple Solution is check all rows one by one. If we find a row ‘i’ such that all elements of this row are 0 except mat[i][i] which may be either 0 or 1, then we check all values in column ‘i’. If all values are 1 in the column, then we return i. Time complexity of this solution is O(n2).

An Efficient Solution can solve this problem in O(n) time. The solution is based on below facts.

1. There can be at most one k that can be qualified to be an answer (Why? Note that if k’th row has all 0’s probably except mat[k][k], then no column can have all 1′)s.
2. If we traverse the given matrix from a corner (preferably from top right and bottom left), we can quickly discard complete row or complete column based on below rules.
• If mat[i][j] is 0 and i != j, then column j cannot be the solution.
• If mat[i][j] is 1 and i != j, then row i cannot be the solution.

Below is the complete algorithm based on above observations.

```1) Start from top right corner, i.e., i = 0, j = n-1.
Initialize result as -1.

2) Do following until we find the result or reach outside the matrix.

......a) If mat[i][j] is 0, then check all elements on left of j in current row.
.........If all elements on left of j are also 0, then set result as i. Note
.........that i may not be result, but if there is a result, then it must be i
.........(Why? we reach mat[i][j] after discarding all rows above it and all
.........columns on right of it)

.........If all left side elements of i'th row are not 0, them this row cannot
.........be a solution, increment i.

......b) If mat[i][j] is 1, then check all elements below i in current column.
.........If all elements below i are 1, then set result as j. Note that j may
......... not be result, but if there is a result, then it must be j

.........If all elements of j'th column are not 1, them this column cannot be a
.........solution decrement j.

3) If result is -1, return it.

4) Else check validity of result by checking all row and column
elements of result```

Below is the implementation based on the above idea.

## C++

```// C++ program to find i such that all entries in i'th row are 0
// and all entries in i't column are 1
#include <iostream>
using namespace std;
#define n 5

int find(bool arr[n][n])
{
// Start from top-most rightmost corner
// (We could start from other corners also)
int i=0, j=n-1;

// Initialize result
int res = -1;

// Find the index (This loop runs at most 2n times, we either
// increment row number or decrement column number)
while (i<n && j>=0)
{
// If current element is 0, then this row may be a solution
if (arr[i][j] == 0)
{
// Check for all elements in this row
while (j >= 0 && (arr[i][j] == 0 || i == j))
j--;

// If all values are 0, then store this row as result
if (j == -1)
{
res = i;
break;
}

// We reach here if we found a 1 in current row, so this
//  row cannot be a solution, increment row number
else i++;
}
else // If current element is 1
{
// Check for all elements in this column
while (i<n && (arr[i][j] == 1 || i == j))
i++;

// If all elements are 1
if (i == n)
{
res = j;
break;
}

// We reach here if we found a 0 in current column, so this
// column cannot be a solution, increment column number
else j--;
}
}

// If we could not find result in above loop, then result doesn't exist
if (res == -1)
return res;

// Check if above computed res is valid
for (int i=0; i<n; i++)
if (res != i && arr[i][res] != 1)
return -1;
for (int j=0; j<n; j++)
if (res != j && arr[res][j] != 0)
return -1;

return res;
}

/* Driver program to test above functions */
int main()
{
bool mat[n][n] = {{0, 0, 1, 1, 0},
{0, 0, 0, 1, 0},
{1, 1, 1, 1, 0},
{0, 0, 0, 0, 0},
{1, 1, 1, 1, 1}};
cout << find(mat);

return 0;
}
```

## Java

```

// Java program to find i such that all entries in i'th row are 0
// and all entries in i't column are 1
import java.io.*;

public class GFG {

static int n = 5;

static int find(boolean arr[][]) {
// Start from top-most rightmost corner
// (We could start from other corners also)
int i = 0, j = n - 1;

// Initialize result
int res = -1;

// Find the index (This loop runs at most 2n times, we either
// increment row number or decrement column number)
while (i < n && j >= 0) {
// If current element is false, then this row may be a solution
if (arr[i][j] == false) {
// Check for all elements in this row
while (j >= 0 && (arr[i][j] == false || i == j)) {
j--;
}

// If all values are false, then store this row as result
if (j == -1) {
res = i;
break;
} // We reach here if we found a 1 in current row, so this
//  row cannot be a solution, increment row number
else {
i++;
}
} else // If current element is 1
{
// Check for all elements in this column
while (i < n && (arr[i][j] == true || i == j)) {
i++;
}

// If all elements are 1
if (i == n) {
res = j;
break;
} // We reach here if we found a 0 in current column, so this
// column cannot be a solution, increment column number
else {
j--;
}
}
}

// If we could not find result in above loop, then result doesn't exist
if (res == -1) {
return res;
}

// Check if above computed res is valid
for (int k = 0; k < n; k++) {
if (res != k && arr[k][res] != true) {
return -1;
}
}
for (int l = 0; l < n; l++) {
if (res != l && arr[res][l] != false) {
return -1;
}
}

return res;
}

/* Driver program to test above functions */
public static void main(String[] args) {
boolean mat[][] = {{false, false, true, true, false},
{false, false, false, true, false},
{true, true, true, true, false},
{false, false, false, false, false},
{true, true, true, true, true}};
System.out.println(find(mat));
}
}

/* This Java code is contributed by PrinciRaj1992*/

```

## Python3

```''' Python program to find k such that all elements in k'th row
are 0 and k'th column are 1'''

def find(arr):

# store length of the array
n = len(arr)

# start from top right-most corner
i = 0
j = n - 1

# initialise result
res = -1

# find the index (This loop runs at most 2n times, we
# either increment row number or decrement column number)
while i < n and j >= 0:

# if the current element is 0, then this row may be a solution
if arr[i][j] == 0:

# check for all the elements in this row
while j >= 0 and (arr[i][j] == 0 or i == j):
j -= 1

# if all values are 0, update result as row number
if j == -1:
res = i
break

# if found a 1 in current row, the row can't be a
# solution, increment row number
else: i += 1

# if the current element is 1
else:

#check for all the elements in this column
while i < n and (arr[i][j] == 1 or i == j):
i +=1

# if all elements are 1, update result as col number
if i == n:
res = j
break

# if found a 0 in current column, the column can't be a
# solution, decrement column number
else: j -= 1

# if we couldn't find result in above loop, result doesn't exist
if res == -1:
return res

# check if the above computed res value is valid
for i in range(0, n):
if res != i and arr[i][res] != 1:
return -1
for j in range(0, j):
if res != j and arr[res][j] != 0:
return -1;

return res;

# test find(arr) function
arr = [ [0,0,1,1,0],
[0,0,0,1,0],
[1,1,1,1,0],
[0,0,0,0,0],
[1,1,1,1,1] ]

print (find(arr))
```

## C#

```
// C# program to find i such that all entries in i'th row are 0
// and all entries in i't column are 1

using System;
public class GFG{

static int n = 5;

static int find(bool [,]arr) {
// Start from top-most rightmost corner
// (We could start from other corners also)
int i = 0, j = n - 1;

// Initialize result
int res = -1;

// Find the index (This loop runs at most 2n times, we either
// increment row number or decrement column number)
while (i < n && j >= 0) {
// If current element is false, then this row may be a solution
if (arr[i,j] == false) {
// Check for all elements in this row
while (j >= 0 && (arr[i,j] == false || i == j)) {
j--;
}

// If all values are false, then store this row as result
if (j == -1) {
res = i;
break;
} // We reach here if we found a 1 in current row, so this
// row cannot be a solution, increment row number
else {
i++;
}
} else // If current element is 1
{
// Check for all elements in this column
while (i < n && (arr[i,j] == true || i == j)) {
i++;
}

// If all elements are 1
if (i == n) {
res = j;
break;
} // We reach here if we found a 0 in current column, so this
// column cannot be a solution, increment column number
else {
j--;
}
}
}

// If we could not find result in above loop, then result doesn't exist
if (res == -1) {
return res;
}

// Check if above computed res is valid
for (int k = 0; k < n; k++) {
if (res != k && arr[k,res] != true) {
return -1;
}
}
for (int l = 0; l < n; l++) {
if (res != l && arr[res,l] != false) {
return -1;
}
}

return res;
}

/* Driver program to test above functions */
public static void Main() {
bool [,]mat = {{false, false, true, true, false},
{false, false, false, true, false},
{true, true, true, true, false},
{false, false, false, false, false},
{true, true, true, true, true}};
Console.WriteLine(find(mat));
}
}

// This code is contributed by PrinciRaj1992

```

## PHP

```<?php
// PHP program to find i such that all
// entries in i'th row are 0 and all
// entries in i'th column are 1

function find(&\$arr)
{
\$n = 5;

// Start from top-most rightmost corner
// (We could start from other corners also)
\$i = 0;
\$j = \$n - 1;

// Initialize result
\$res = -1;

// Find the index (This loop runs at most
// 2n times, we either increment row number
// or decrement column number)
while (\$i < \$n && \$j >= 0)
{
// If current element is 0, then this
// row may be a solution
if (\$arr[\$i][\$j] == 0)
{
// Check for all elements in this row
while (\$j >= 0 && (\$arr[\$i][\$j] == 0 ||
\$i == \$j))
\$j--;

// If all values are 0, then store
// this row as result
if (\$j == -1)
{
\$res = \$i;
break;
}

// We reach here if we found a 1 in current
// row, so this row cannot be a solution,
// increment row number
else
\$i++;
}
else // If current element is 1
{
// Check for all elements in this column
while (\$i < \$n && (\$arr[\$i][\$j] == 1 ||
\$i == \$j))
\$i++;

// If all elements are 1
if (\$i == \$n)
{
\$res = \$j;
break;
}

// We reach here if we found a 0 in current
// column, so this column cannot be a solution,
// increment column number
else
\$j--;
}
}

// If we could not find result in above
// loop, then result doesn't exist
if (\$res == -1)
return \$res;

// Check if above computed res is valid
for (\$i = 0; \$i < \$n; \$i++)
if (\$res != \$i && \$arr[\$i][\$res] != 1)
return -1;
for (\$j = 0; \$j < \$n; \$j++)
if (\$res != \$j && \$arr[\$res][\$j] != 0)
return -1;

return \$res;
}

// Driver Code
\$mat = array(array(0, 0, 1, 1, 0),
array(0, 0, 0, 1, 0),
array(1, 1, 1, 1, 0),
array(0, 0, 0, 0, 0),
array(1, 1, 1, 1, 1));
echo (find(\$mat));

// This code is contributed by Shivi_Aggarwal
?>
```

## Javascript

```<script>

// JavaScript program to find i such that
// all entries in i'th row are 0
// and all entries in i't column are 1
var n = 5;
function find(arr) {
// Start from top-most rightmost corner
// (We could start from other corners also)
var i = 0, j = n - 1;
// Initialize result
var res = -1;
// Find the index (This loop runs at most 2n times, we either
// increment row number or decrement column number)
while (i < n && j >= 0) {
// If current element is false,
// then this row may be a solution
if (arr[i][j] == false) {
// Check for all elements in this row
while (j >= 0 && (arr[i][j] == false || i == j)) {
j--;
}
// If all values are false,
// then store this row as result
if (j == -1) {
res = i;
break;
} // We reach here if we found a
// 1 in current row, so this
// row cannot be a solution, increment row number
else {
i++;
}
} else // If current element is 1
{
// Check for all elements in this column
while (i < n && (arr[i][j] == true || i == j)) {
i++;
}
// If all elements are 1
if (i == n) {
res = j;
break;
} // We reach here if we found a 0
// in current column, so this
// column cannot be a solution,
// increment column number
else {
j--;
}
}
}
// If we could not find result in above loop,
// then result doesn't exist
if (res == -1) {
return res;
}
// Check if above computed res is valid
for (var k = 0; k < n; k++) {
if (res != k && arr[k][res] != true) {
return -1;
}
}
for (var l = 0; l < n; l++) {
if (res != l && arr[res][l] != false) {
return -1;
}
}
return res;
}

/* Driver program to test above functions */
var mat = [[false, false, true, true, false],
[false, false, false, true, false],
[true, true, true, true, false],
[false, false, false, false, false],
[true, true, true, true, true]];
document.write(find(mat));

</script> ```
Output

`3`

Time complexity of this solution is O(n). Note that we traverse at most 2n elements in the main while loop.
Auxiliary Space: O(1)