Find K for every Array element such that at least K prefixes are ≥ K

Given an array arr[] consisting of N non-negative integers, the task is to find an integer K for every index such that at least K integers in the array till that index are greater or equal to K.
Note: Consider 1 based indexing
Examples:

Input: arr[] = {3, 0, 6, 1, 5} 
Output: K = {1, 1, 2, 2, 3} 
Explanation: 
At index 1, there is 1 number greater than or equal to 1 in the array i.e. 3. So K value for elements upto index 1 is 1. 
At index 2, there is 1 number greater than or equal to 1 in the array i.e. 3. So K value for elements upto index 2 is 1. 
At index 3, there are 2 numbers greater than or equal to 2 in the array i.e. 3 and 6. So K value for elements upto index 3 is 2. 
At index 4, there are 2 numbers greater than or equal to 2 in the array i.e. 3 and 6. So K value for elements upto index 4 is 2. 
At index 5, there are 3 numbers greater than or equal to 3 in the array i.e. 3, 6 and 5. So K value for elements up to index 5 is 3.

Input: arr[] = {9, 10, 7, 5, 0, 10, 2, 0} 
Output: K = {1, 2, 3, 4, 4, 5, 5, 5}

Naive Approach: 
The simplest approach is to find the value of K for all the elements of the array in the range [0, i], where i is the index of the array arr[], using the efficient approach used in the article whose link is given here

Time Complexity: O(N2
Space Complexity: O(N)

Efficient Approach: 
The idea is to use Multiset(Red-Black Tree). Multiset stores the values in a sorted order which helps to check that if the current minimum value in the multiset is greater than or equal to its size. If yes, then the value of integer K will be the size of the multiset. 
Below are the steps for the implementation:



  1. Traverse the array from index 0 to N-1.
  2. For each index, insert the element into the multiset and check if the smallest value in the multiset is less than the size of the multiset.
  3. If true, then erase the starting element and print the size of the multiset.
  4. If false then simply print the size of the multiset.
  5. The size of the multiset is the required K value for every index i.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach 
  
#include <bits/stdc++.h> 
using namespace std; 
  
// Function to find the K-value 
// for every index in the array 
int print_h_index(int arr[], int N) 
    // Multiset to store the array 
    // in the form of red-black tree 
    multiset<int> ms; 
  
    // Iterating over the array 
    for (int i = 0; i < N; i++) { 
  
        // Inserting the current 
        // value in the multiset 
        ms.insert(arr[i]); 
  
        // Condition to check if 
        // the smallest value 
        // in the set is less than 
        // it's size 
        if (*ms.begin() 
            < ms.size()) { 
  
            // Erase the smallest 
            // value 
            ms.erase(ms.begin()); 
        
  
        // h-index value will be 
        // the size of the multiset 
        cout << ms.size() << " "
    
  
// Driver Code 
int main() 
  
    // array 
    int arr[] = { 9, 10, 7, 5, 0, 
                10, 2, 0 }; 
  
    // Size of the array 
    int N = sizeof(arr) 
            / sizeof(arr[0]); 
  
    // function call 
    print_h_index(arr, N); 
  
    return 0; 
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach 
import java.util.*; 
  
class GFG{ 
      
// Function to find the K-value 
// for every index in the array 
static void print_h_index(int arr[], int N) 
      
    // Multiset to store the array 
    // in the form of red-black tree 
    List<Integer> ms = new ArrayList<Integer>(); 
  
    // Iterating over the array 
    for(int i = 0; i < N; i++) 
    
          
        // Inserting the current 
        // value in the multiset 
        ms.add(arr[i]); 
  
        // Condition to check if 
        // the smallest value 
        // in the set is less than 
        // it's size 
        int t = Collections.min(ms); 
        if (t < ms.size()) 
        
  
            // Erase the smallest 
            // value 
            ms.remove(ms.indexOf(t)); 
        
  
        // h-index value will be 
        // the size of the multiset 
        System.out.print(ms.size() + " "); 
    
  
// Driver code 
public static void main(String[] args) 
      
    // Array 
    int arr[] = { 9, 10, 7, 5, 0
                10, 2, 0 }; 
      
    // Size of the array 
    int N = arr.length; 
      
    // Function call 
    print_h_index(arr, N); 
  
// This code is contributed by offbeat 
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach 
using System; 
using System.Collections; 
using System.Collections.Generic; 
  
class GFG{
      
// Function to find the K-value
// for every index in the array
static void print_h_index(int []arr, int N)
{
      
    // Multiset to store the array
    // in the form of red-black tree
    ArrayList ms = new ArrayList();
  
    // Iterating over the array
    for(int i = 0; i < N; i++)
    {
          
        // Inserting the current
        // value in the multiset
        ms.Add(arr[i]);
  
        // Condition to check if
        // the smallest value
        // in the set is less than
        // it's size
        int t = int.MaxValue;
        foreach(int x in ms)
        {
            if(x < t)
            {
                t = x;
            }
        }
          
        if (t < ms.Count) 
        {
              
            // Erase the smallest
            // value
            ms.Remove(t);
        }
  
        // h-index value will be
        // the size of the multiset
        Console.Write(ms.Count + " ");
    }
}
  
// Driver code
public static void Main(string[] args)
{
      
    // Array
    int []arr = { 9, 10, 7, 5, 0,
                  10, 2, 0 };
      
    // Size of the array
    int N = arr.Length;
      
    // Function call
    print_h_index(arr, N);
}
}
  
// This code is contributed by rutvik_56
chevron_right

Output: 
1 2 3 4 4 5 5 5 

Time Complexity: O(N * log(N)) 
Auxiliary Space Complexity: O(N)
 




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : offbeat, nidhi_biet, rutvik_56

Article Tags :
Practice Tags :