Given N jobs where every job is represented by following three elements of it.

1. Start Time

2. Finish Time

3. Profit or Value Associated

Find the **subset of jobs** associated with maximum profit such that no two jobs in the subset overlap.

Examples:

Input:Number of Jobs n = 4 Job Details {Start Time, Finish Time, Profit} Job 1: {1, 2, 50} Job 2: {3, 5, 20} Job 3: {6, 19, 100} Job 4: {2, 100, 200}Output:Jobs involved in maximum profit are Job 1: {1, 2, 50} Job 4: {2, 100, 200}

In previous post, we have discussed about Weighted Job Scheduling problem. However, the post only covered code related to finding maximum profit. In this post, we will also print the jobs invloved in maximum profit.

Let arr[0..n-1] be the input array of Jobs. We define an array DP[] such that DP[i] stores Jobs involved to achieve maximum profit of array arr[0..i]. i.e. DP[i] stores solution to subproblem arr[0..i]. The rest of algorithm remains same as discussed in previous post.

Below is its C++ implementation –

`// C++ program for weighted job scheduling using Dynamic ` `// Programming and Binary Search ` `#include <bits/stdc++.h> ` `using` `namespace` `std; ` ` ` `// A job has start time, finish time and profit. ` `struct` `Job ` `{ ` ` ` `int` `start, finish, profit; ` `}; ` ` ` `// to store subset of jobs ` `struct` `weightedJob ` `{ ` ` ` `// vector of Jobs ` ` ` `vector<Job> job; ` ` ` ` ` `// find profit associated with included Jobs ` ` ` `int` `value; ` `}; ` ` ` `// A utility function that is used for sorting events ` `// according to finish time ` `bool` `jobComparator(Job s1, Job s2) ` `{ ` ` ` `return` `(s1.finish < s2.finish); ` `} ` ` ` `// A Binary Search based function to find the latest job ` `// (before current job) that doesn't conflict with current ` `// job. "index" is index of the current job. This function ` `// returns -1 if all jobs before index conflict with it. The ` `// array jobs[] is sorted in increasing order of finish time ` `int` `latestNonConflict(Job jobs[], ` `int` `index) ` `{ ` ` ` `// Initialize 'lo' and 'hi' for Binary Search ` ` ` `int` `lo = 0, hi = index - 1; ` ` ` ` ` `// Perform binary Search iteratively ` ` ` `while` `(lo <= hi) ` ` ` `{ ` ` ` `int` `mid = (lo + hi) / 2; ` ` ` `if` `(jobs[mid].finish <= jobs[index].start) ` ` ` `{ ` ` ` `if` `(jobs[mid + 1].finish <= jobs[index].start) ` ` ` `lo = mid + 1; ` ` ` `else` ` ` `return` `mid; ` ` ` `} ` ` ` `else` ` ` `hi = mid - 1; ` ` ` `} ` ` ` ` ` `return` `-1; ` `} ` ` ` `// The main function that finds the subset of jobs ` `// associated with maximum profit such that no two ` `// jobs in the subset overlap. ` `int` `findMaxProfit(Job arr[], ` `int` `n) ` `{ ` ` ` `// Sort jobs according to finish time ` ` ` `sort(arr, arr + n, jobComparator); ` ` ` ` ` `// Create an array to store solutions of subproblems. ` ` ` `// DP[i] stores the Jobs involved and their total profit ` ` ` `// till arr[i] (including arr[i]) ` ` ` `weightedJob DP[n]; ` ` ` ` ` `// initialize DP[0] to arr[0] ` ` ` `DP[0].value = arr[0].profit; ` ` ` `DP[0].job.push_back(arr[0]); ` ` ` ` ` `// Fill entries in DP[] using recursive property ` ` ` `for` `(` `int` `i = 1; i < n; i++) ` ` ` `{ ` ` ` `// Find profit including the current job ` ` ` `int` `inclProf = arr[i].profit; ` ` ` `int` `l = latestNonConflict(arr, i); ` ` ` `if` `(l != - 1) ` ` ` `inclProf += DP[l].value; ` ` ` ` ` `// Store maximum of including and excluding ` ` ` `if` `(inclProf > DP[i - 1].value) ` ` ` `{ ` ` ` `DP[i].value = inclProf; ` ` ` ` ` `// including previous jobs and current job ` ` ` `DP[i].job = DP[l].job; ` ` ` `DP[i].job.push_back(arr[i]); ` ` ` ` ` `} ` ` ` `else` ` ` `// excluding the current job ` ` ` `DP[i] = DP[i - 1]; ` ` ` `} ` ` ` ` ` `// DP[n - 1] stores the result ` ` ` `cout << ` `"Optimal Jobs for maximum profits are\n"` `; ` ` ` `for` `(` `int` `i=0; i<DP[n-1].job.size(); i++) ` ` ` `{ ` ` ` `Job j = DP[n-1].job[i]; ` ` ` `cout << ` `"("` `<< j.start << ` `", "` `<< j.finish ` ` ` `<< ` `", "` `<< j.profit << ` `")"` `<< endl; ` ` ` `} ` ` ` `cout << ` `"\nTotal Optimal profit is "` `<< DP[n - 1].value; ` `} ` ` ` `// Driver program ` `int` `main() ` `{ ` ` ` `Job arr[] = {{3, 5, 20}, {1, 2, 50}, {6, 19, 100}, ` ` ` `{2, 100, 200} }; ` ` ` `int` `n = ` `sizeof` `(arr)/` `sizeof` `(arr[0]); ` ` ` ` ` `findMaxProfit(arr, n); ` ` ` ` ` `return` `0; ` `} ` |

*chevron_right*

*filter_none*

Output:

Optimal Jobs for maximum profits are (1, 2, 50) (2, 100, 200) Total Optimal profit is 250

This article is contributed by **Aditya Goel**. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.

## Recommended Posts:

- Weighted Job Scheduling
- Weighted Job Scheduling in O(n Log n) time
- Weighted Job Scheduling | Set 2 (Using LIS)
- Queries to find sum of distance of a given node to every leaf node in a Weighted Tree
- Shortest path with exactly k edges in a directed and weighted graph
- Shortest path with exactly k edges in a directed and weighted graph | Set 2
- Maximum weighted edge in path between two nodes in an N-ary tree using binary lifting
- Assembly Line Scheduling | DP-34
- Minimum halls required for class scheduling
- Program to find amount of water in a given glass
- Find if a string is interleaved of two other strings | DP-33
- Find all distinct palindromic sub-strings of a given string
- Find the minimum cost to reach destination using a train
- Find minimum number of coins that make a given value
- Find length of the longest consecutive path from a given starting character
- Find number of solutions of a linear equation of n variables
- Find the longest path in a matrix with given constraints
- Find minimum possible size of array with given rules for removing elements
- Find maximum length Snake sequence
- Find if string is K-Palindrome or not | Set 1