# Find if there is any subset of size K with 0 sum in an array of -1 and +1

Given an integer K and an array arr containing only 1 and -1, the task is to find if there is any subset of size K sum of whose elements is 0.

Examples:

Input: arr[] = {1, -1, 1}, K = 2
Output: Yes
{1, -1} is a valid subset

Input: arr[] = {1, 1, -1, -1, 1}, K = 5
Output: No

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:

• In order for the sum to be 0, there has to be equal number of 1 and -1 in the subset.
• If K is odd then no subset will satisfy the given condition.
• Else if K is even then we need to choose exactly (K / 2) 1’s and (K / 2) -1’s in order to form the subset so that the sum of all of it’s elements is 0
• So, if K is even and number of 1’s ≥ K / 2 and number of -1’s ≥ K / 2 then print Yes else print No.

Below is the implementation of the above approach:

## C++

 `// C++ program to find if there is a subset of size ` `// k with sum 0 in an array of -1 and +1 ` `#include ` `using` `namespace` `std; ` ` `  `// Function to return the number of 1's in the array ` `int` `countOnes(``int` `n, ``int` `a[]) ` `{ ` `    ``int` `i, count = 0; ` `    ``for` `(i = 0; i < n; i++) ` `        ``if` `(a[i] == 1) ` `            ``count++; ` `    ``return` `count; ` `} ` ` `  `bool` `isSubset(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``int` `countPos1 = countOnes(n, arr); ` `    ``int` `countNeg1 = n - countPos1; ` ` `  `    ``// If K is even and there are ` `    ``// at least K/2 1's and -1's ` `    ``return` `(k % 2 == 0 && countPos1 >= k / 2 &&  ` `                          ``countNeg1 >= k / 2); ` `} ` ` `  `// Driver Program to test above function ` `int` `main() ` `{ ` `    ``int` `a[] = { 1, 1, -1, -1, 1 }; ` `    ``int` `n = ``sizeof``(a) / ``sizeof``(a); ` `    ``int` `k = 5; ` `    ``if` `(isSubset(a, n, k)) ` `      ``cout << ``"Yes"``; ` `    ``else` `      ``cout << ``"No"``; ` `    ``return` `0; ` `} `

## Java

 `// Java program to find if there is a subset of size ` `// k with sum 0 in an array of -1 and +1 ` ` `  `import` `java.io.*; ` ` `  `class` `GFG { ` `    `  ` `  `// Function to return the number of 1's in the array ` `static` `int` `countOnes(``int` `n, ``int` `a[]) ` `{ ` `    ``int` `i, count = ``0``; ` `    ``for` `(i = ``0``; i < n; i++) ` `        ``if` `(a[i] == ``1``) ` `            ``count++; ` `    ``return` `count; ` `} ` ` `  `static` `boolean` `isSubset(``int` `arr[], ``int` `n, ``int` `k) ` `{ ` `    ``int` `countPos1 = countOnes(n, arr); ` `    ``int` `countNeg1 = n - countPos1; ` ` `  `    ``// If K is even and there are ` `    ``// at least K/2 1's and -1's ` `    ``return` `(k % ``2` `== ``0` `&& countPos1 >= k / ``2` `&&  ` `                        ``countNeg1 >= k / ``2``); ` `} ` ` `  `// Driver Program to test above function ` `public` `static` `void` `main (String[] args) { ` `        ``int` `[]a = { ``1``, ``1``, -``1``, -``1``, ``1` `}; ` `    ``int` `n = a.length; ` `    ``int` `k = ``5``; ` `    ``if` `(isSubset(a, n, k)) ` `     ``System.out.println( ``"Yes"``); ` `    ``else` `    ``System.out.println( ``"No"``); ` `    ``} ` `} ` `// This code is contributed by shs `

## Python3

 `# Python3 program to find if there is  ` `# a subset of size k with sum 0 in an ` `# array of -1 and +1  ` ` `  `# Function to return the number of ` `# 1's in the array  ` `def` `countOnes(n, a):  ` ` `  `    ``count ``=` `0` `    ``for` `i ``in` `range``(``0``, n):  ` `        ``if` `a[i] ``=``=` `1``:  ` `            ``count ``+``=` `1` `    ``return` `count  ` ` `  `def` `isSubset(arr, n, k):  ` ` `  `    ``countPos1 ``=` `countOnes(n, arr)  ` `    ``countNeg1 ``=` `n ``-` `countPos1  ` ` `  `    ``# If K is even and there are  ` `    ``# at least K/2 1's and -1's  ` `    ``return` `(k ``%` `2` `=``=` `0` `and` `countPos1 >``=` `k ``/``/` `2` `and` `                           ``countNeg1 >``=` `k ``/``/` `2``)  ` ` `  `# Driver Code ` `if` `__name__ ``=``=` `"__main__"``:  ` ` `  `    ``a ``=` `[``1``, ``1``, ``-``1``, ``-``1``, ``1``]  ` `    ``n ``=` `len``(a)  ` `    ``k ``=` `5` `     `  `    ``if` `isSubset(a, n, k) ``=``=` `True``:  ` `        ``print``(``"Yes"``)  ` `    ``else``: ` `        ``print``(``"No"``)  ` `     `  `# This code is contributed  ` `# by Rituraj Jain `

## C#

 `// C# program to find if there is  ` `// a subset of size k with sum 0 ` `// in an array of -1 and +1 ` `using` `System; ` ` `  `class` `GFG ` `{ ` ` `  `// Function to return the number ` `// of 1's in the array ` `static` `int` `countOnes(``int` `n, ``int` `[]a) ` `{ ` `    ``int` `i, count = 0; ` `    ``for` `(i = 0; i < n; i++) ` `        ``if` `(a[i] == 1) ` `            ``count++; ` `    ``return` `count; ` `} ` ` `  `static` `bool` `isSubset(``int` `[]arr, ` `                     ``int` `n, ``int` `k) ` `{ ` `    ``int` `countPos1 = countOnes(n, arr); ` `    ``int` `countNeg1 = n - countPos1; ` ` `  `    ``// If K is even and there are ` `    ``// at least K/2 1's and -1's ` `    ``return` `(k % 2 == 0 && countPos1 >= k / 2 &&  ` `                          ``countNeg1 >= k / 2); ` `} ` ` `  `// Driver Code ` `public` `static` `void` `Main () ` `{ ` `    ``int` `[]a = { 1, 1, -1, -1, 1 }; ` `    ``int` `n = a.Length; ` `    ``int` `k = 5; ` `    ``if` `(isSubset(a, n, k)) ` `        ``Console.WriteLine( ``"Yes"``); ` `    ``else` `        ``Console.WriteLine( ``"No"``); ` `} ` `} ` ` `  `// This code is contributed by shs `

## PHP

 `= ``\$k` `/ 2 &&  ` `                           ``\$countNeg1` `>= ``\$k` `/ 2); ` `} ` ` `  `// Driver Code ` `\$a` `= ``array``(1, 1, -1, -1, 1); ` `\$n` `= sizeof(``\$a``); ` `\$k` `= 5; ` ` `  `if` `(isSubset(``\$a``, ``\$n``, ``\$k``)) ` `    ``echo` `"Yes"``; ` `else` `    ``echo` `"No"``; ` ` `  `// This code is contributed ` `// by Akanksha Rai ` `?> `

Output:

```No
```

Time Complexity: O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

1

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.