# Find if there is a subarray with 0 sum

• Difficulty Level : Medium
• Last Updated : 15 Nov, 2021

Given an array of positive and negative numbers, find if there is a subarray (of size at-least one) with 0 sum.

Examples :

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: {4, 2, -3, 1, 6}
Output: true
Explanation:
There is a subarray with zero sum from index 1 to 3.

Input: {4, 2, 0, 1, 6}
Output: false

Input: {-3, 2, 3, 1, 6}
Output: false

A simple solution is to consider all subarrays one by one and check the sum of every subarray. We can run two loops: the outer loop picks a starting point i and the inner loop tries all subarrays starting from i (See this for implementation). The time complexity of this method is O(n2).
We can also use hashing. The idea is to iterate through the array and for every element arr[i], calculate the sum of elements from 0 to i (this can simply be done as sum += arr[i]). If the current sum has been seen before, then there is a zero-sum array. Hashing is used to store the sum values so that we can quickly store sum and find out whether the current sum is seen before or not.
Example :

```arr[] = {1, 4, -2, -2, 5, -4, 3}

If we consider all prefix sums, we can
notice that there is a subarray with 0
sum when :
1) Either a prefix sum repeats or
2) Or prefix sum becomes 0.

Prefix sums for above array are:
1, 5, 3, 1, 6, 2, 5

Since prefix sum 1 repeats, we have a subarray
with 0 sum. ```

Following is implementation of the above approach.

## C++

 `// A C++ program to find if``// there is a zero sum subarray``#include ``using` `namespace` `std;` `bool` `subArrayExists(``int` `arr[], ``int` `n)``{``    ``unordered_set<``int``> sumSet;` `    ``// Traverse through array``    ``// and store prefix sums``    ``int` `sum = 0;``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``sum += arr[i];` `        ``// If prefix sum is 0 or``        ``// it is already present``        ``if` `(sum == 0``            ``|| sumSet.find(sum)``            ``!= sumSet.end())``            ``return` `true``;` `        ``sumSet.insert(sum);``    ``}``    ``return` `false``;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { -3, 2, 3, 1, 6 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``if` `(subArrayExists(arr, n))``        ``cout << ``"Found a subarray with 0 sum"``;``    ``else``        ``cout << ``"No Such Sub Array Exists!"``;``    ``return` `0;``}`

## Java

 `// A Java program to find``// if there is a zero sum subarray``import` `java.util.HashSet;``import` `java.util.Set;` `class` `ZeroSumSubarray``{``    ``// Returns true if arr[]``    ``// has a subarray with sero sum``    ``static` `Boolean subArrayExists(``int` `arr[])``    ``{``        ``// Creates an empty hashset hs``        ``Set hs = ``new` `HashSet();` `        ``// Initialize sum of elements``        ``int` `sum = ``0``;` `        ``// Traverse through the given array``        ``for` `(``int` `i = ``0``; i < arr.length; i++)``        ``{``            ``// Add current element to sum``            ``sum += arr[i];` `            ``// Return true in following cases``            ``// a) Current element is 0``            ``// b) sum of elements from 0 to i is 0``            ``// c) sum is already present in hash map``            ``if` `(arr[i] == ``0``                ``|| sum == ``0``                ``|| hs.contains(sum))``                ``return` `true``;` `            ``// Add sum to hash set``            ``hs.add(sum);``        ``}` `        ``// We reach here only when there is``        ``// no subarray with 0 sum``        ``return` `false``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String arg[])``    ``{``        ``int` `arr[] = { -``3``, ``2``, ``3``, ``1``, ``6` `};``        ``if` `(subArrayExists(arr))``            ``System.out.println(``                ``"Found a subarray with 0 sum"``);``        ``else``            ``System.out.println(``"No Such Sub Array Exists!"``);``    ``}``}`

## Python3

 `# A python program to find if``# there is a zero sum subarray`  `def` `subArrayExists(arr, n):``    ``# traverse through array``    ``# and store prefix sums``    ``n_sum ``=` `0``    ``s ``=` `set``()` `    ``for` `i ``in` `range``(n):``        ``n_sum ``+``=` `arr[i]` `        ``# If prefix sum is 0 or``        ``# it is already present``        ``if` `n_sum ``=``=` `0` `or` `n_sum ``in` `s:``            ``return` `True``        ``s.add(n_sum)` `    ``return` `False`  `# Driver code``arr ``=` `[``-``3``, ``2``, ``3``, ``1``, ``6``]``n ``=` `len``(arr)``if` `subArrayExists(arr, n) ``=``=` `True``:``    ``print``(``"Found a sunbarray with 0 sum"``)``else``:``    ``print``(``"No Such sub array exits!"``)` `# This code is contributed by Shrikant13`

## C#

 `// A C# program to find if there``// is a zero sum subarray``using` `System;``using` `System.Collections.Generic;` `class` `GFG {``    ``// Returns true if arr[] has``    ``// a subarray with sero sum``    ``static` `bool` `SubArrayExists(``int``[] arr)``    ``{``        ``// Creates an empty HashSet hM``        ``HashSet<``int``> hs = ``new` `HashSet<``int``>();``        ``// Initialize sum of elements``        ``int` `sum = 0;` `        ``// Traverse through the given array``        ``for` `(``int` `i = 0; i < arr.Length; i++)``        ``{``            ``// Add current element to sum``            ``sum += arr[i];` `            ``// Return true in following cases``            ``// a) Current element is 0``            ``// b) sum of elements from 0 to i is 0``            ``// c) sum is already present in hash set``            ``if` `(arr[i] == 0``                ``|| sum == 0``                ``|| hs.Contains(sum))``                ``return` `true``;` `            ``// Add sum to hash set``            ``hs.Add(sum);``        ``}` `        ``// We reach here only when there is``        ``// no subarray with 0 sum``        ``return` `false``;``    ``}` `    ``// Main Method``    ``public` `static` `void` `Main()``    ``{``        ``int``[] arr = { -3, 2, 3, 1, 6 };``        ``if` `(SubArrayExists(arr))``            ``Console.WriteLine(``                ``"Found a subarray with 0 sum"``);``        ``else``            ``Console.WriteLine(``"No Such Sub Array Exists!"``);``    ``}``}`

## Javascript

 `// A Javascript program to``//  find if there is a zero sum subarray` `const subArrayExists = (arr) => {``    ``const sumSet = ``new` `Set();` `    ``// Traverse through array``    ``// and store prefix sums``    ``let sum = 0;``    ``for` `(let i = 0 ; i < arr.length ; i++)``    ``{``        ``sum += arr[i];` `        ``// If prefix sum is 0``        ``// or it is already present``        ``if` `(sum === 0 || sumSet.has(sum))``            ``return` `true``;` `        ``sumSet.add(sum);``    ``}``    ``return` `false``;``}` `// Driver code` `const arr =  [-3, 2, 3, 1, 6];``if` `(subArrayExists(arr))``    ``console.log(``"Found a subarray with 0 sum"``);``else``    ``console.log(``"No Such Sub Array Exists!"``);`
Output
`No Such Sub Array Exists!`

Time Complexity of this solution can be considered as O(n) under the assumption that we have good hashing function that allows insertion and retrieval operations in O(1) time.
Space Complexity: O(n) .Here we required extra space for unordered_set to insert array elements.

Exercise:
Extend the above program to print starting and ending indexes of all subarrays with 0 sum.