Given a string, find out if the string is K-Palindrome or not. A k-palindrome string transforms into a palindrome on removing at most k characters from it.

Examples :

Input : String - abcdecba, k = 1 Output : Yes String can become palindrome by remo- -ving 1 character i.e. either d or e) Input : String - abcdeca, K = 2 Output : Yes Can become palindrome by removing 2 characters b and e. Input : String - acdcb, K = 1 Output : No String can not become palindrome by removing only one character.

If we carefully analyze the problem, the task is to transform the given string into its reverse by removing at most K characters from it. The problem is basically a variation of Edit Distance. We can modify the Edit Distance problem to consider given string and its reverse as input and only operation allowed is deletion. Since given string is compared with its reverse, we will do at most N deletions from first string and N deletions from second string to make them equal. Therefore, for a string to be k-palindrome, 2*N <= 2*K should hold true. Below are the detailed steps of algorithm - Process all characters one by one staring from either from left or right sides of both strings. Let us traverse from the right corner, there are two possibilities for every pair of character being traversed.

- If last characters of two strings are same, we ignore last characters and get count for remaining strings. So we recur for lengths m-1 and n-1 where m is length of str1 and n is length of str2.
- If last characters are not same, we consider remove operation on last character of first string and last character of second string, recursively compute minimum cost for the operations and take minimum of two values.
- Remove last char from str1: Recur for m-1 and n.
- Remove last char from str2: Recur for m and n-1.

Below is Naive recursive implementation of above approach.

## C++

// A Naive recursive C++ program to find // if given string is K-Palindrome or not #include<bits/stdc++.h> using namespace std; // find if given string is K-Palindrome or not int isKPalRec(string str1, string str2, int m, int n) { // If first string is empty, the only option is to // remove all characters of second string if (m == 0) return n; // If second string is empty, the only option is to // remove all characters of first string if (n == 0) return m; // If last characters of two strings are same, ignore // last characters and get count for remaining strings. if (str1[m-1] == str2[n-1]) return isKPalRec(str1, str2, m-1, n-1); // If last characters are not same, // 1. Remove last char from str1 and recur for m-1 and n // 2. Remove last char from str2 and recur for m and n-1 // Take minimum of above two operations return 1 + min(isKPalRec(str1, str2, m-1, n), // Remove from str1 isKPalRec(str1, str2, m, n-1)); // Remove from str2 } // Returns true if str is k palindrome. bool isKPal(string str, int k) { string revStr = str; reverse(revStr.begin(), revStr.end()); int len = str.length(); return (isKPalRec(str, revStr, len, len) <= k*2); } // Driver program int main() { string str = "acdcb"; int k = 2; isKPal(str, k)? cout << "Yes" : cout << "No"; return 0; }

## Python3

# A Naive recursive Python3 # code to find if given string # is K-Palindrome or not # Find if given string # is K-Palindrome or not def isKPalRec(str1, str2, m, n): # If first string is empty, # the only option is to remove # all characters of second string if not m: return n # If second string is empty, # the only option is to remove # all characters of first string if not n: return m # If last characters of two strings # are same, ignore last characters # and get count for remaining strings. if str1[m-1] == str2[n-1]: return isKPalRec(str1, str2, m-1, n-1) # If last characters are not same, # 1. Remove last char from str1 and recur for m-1 and n # 2. Remove last char from str2 and recur for m and n-1 # Take minimum of above two operations res = 1 + min(isKPalRec(str1, str2, m-1, n), # Remove from str1 (isKPalRec(str1, str2, m, n-1))) # Remove from str2 return res # Returns true if str is k palindrome. def isKPal(string, k): revStr = string[::-1] l = len(string) return (isKPalRec(string, revStr, l, l) <= k * 2) # Driver program string = "acdcb" k = 2 print("Yes" if isKPal(string, k) else "No") # This code is contributed by Ansu Kumari.

Output :

Yes

The time complexity of above solution is exponential. In worst case, we may end up doing O(2^{n}) operations. The worst case happens string contains all distinct characters.

This problem has both properties (see this and this) of a dynamic programming problem. Like other typical Dynamic Programming(DP) problems, re-computations of same subproblems can be avoided by constructing a temporary array that stores results of subproblems .

Below is Bottom-up implementation of above recursive approach :

## C++

// C++ program to find if given string is K-Palindrome or not #include <bits/stdc++.h> using namespace std; // find if given string is K-Palindrome or not int isKPalDP(string str1, string str2, int m, int n) { // Create a table to store results of subproblems int dp[m + 1][n + 1]; // Fill dp[][] in bottom up manner for (int i = 0; i <= m; i++) { for (int j = 0; j <= n; j++) { // If first string is empty, only option is to // remove all characters of second string if (i == 0) dp[i][j] = j; // Min. operations = j // If second string is empty, only option is to // remove all characters of first string else if (j == 0) dp[i][j] = i; // Min. operations = i // If last characters are same, ignore last character // and recur for remaining string else if (str1[i - 1] == str2[j - 1]) dp[i][j] = dp[i - 1][j - 1]; // If last character are different, remove it // and find minimum else dp[i][j] = 1 + min(dp[i - 1][j], // Remove from str1 dp[i][j - 1]); // Remove from str2 } } return dp[m][n]; } // Returns true if str is k palindrome. bool isKPal(string str, int k) { string revStr = str; reverse(revStr.begin(), revStr.end()); int len = str.length(); return (isKPalDP(str, revStr, len, len) <= k*2); } // Driver program int main() { string str = "acdcb"; int k = 2; isKPal(str, k)? cout << "Yes" : cout << "No"; return 0; }

## Python3

# Python program to find if given # string is K-Palindrome or not # Find if given string is # K-Palindrome or not def isKPalDP(str1, str2, m, n): # Create a table to store # results of subproblems dp = [[0] * (n + 1) for _ in range(m + 1)] # Fill dp[][] in bottom up manner for i in range(m + 1): for j in range(n + 1): # If first string is empty, # only option is to remove # all characters of second string if not i : dp[i][j] = j # Min. operations = j # If second string is empty, # only option is to remove # all characters of first string elif not j : dp[i][j] = i # Min. operations = i # If last characters are same, # ignore last character and # recur for remaining string elif (str1[i - 1] == str2[j - 1]): dp[i][j] = dp[i - 1][j - 1] # If last character are different, # remove it and find minimum else: dp[i][j] = 1 + min(dp[i - 1][j], # Remove from str1 (dp[i][j - 1])) # Remove from str2 return dp[m][n] # Returns true if str # is k palindrome. def isKPal(string, k): revStr = string[::-1] l = len(string) return (isKPalDP(string, revStr, l, l) <= k * 2) # Driver program string = "acdcb" k = 2 print("Yes" if isKPal(string, k) else "No") # This code is contributed by Ansu Kumari.

Output :

Yes

Time complexity of above solution is O(m x n). We can improve time complexity by making use of the fact that only k deletions are allowed. Auxiliary space used is O(m x n).

Find if string is K-Palindrome or not | Set 2 (Using LCS)

This article is contributed by **Aditya Goel**. If you like GeeksforGeeks and would like to contribute, you can also write an article and mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above