Find the highest occurring digit in prime numbers in a range

Given a range L to R, the task is to find the highest occurring digit in prime numbers lie between L and R (both inclusive). If multiple digits have same highest frequency print the largest of them. If no prime number occurs between L and R, output -1.

Examples:

Input : L = 1 and R = 20.
Output : 1
Prime number between 1 and 20 are 2, 3, 5, 7, 11, 13, 17, 19.
1 occur maximum i.e 5 times among 0 to 9.

The idea is to start from L to R, check if the number is prime or not. If prime then increment the frequency of digits (using array) present in the prime number. To check if number is prime or not we can use Sieve of Eratosthenes.

Below is the implementation of this approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find the highest occurring digit
// in prime numbers in a range L to R.
#include<bits/stdc++.h>
using namespace std;
  
// Sieve of Eratosthenes
void sieve(bool prime[], int n)
{
    for (int p = 2; p * p  <= n; p++)
    {
        if (prime[p] == false)
            for (int i = p*2; i <= n; i+=p)
                prime[i] = true;
    }
}
  
// Returns maximum occurring digits in primes
// from l to r.
int maxDigitInPrimes(int L, int R)
{
    bool prime[R+1];
    memset(prime, 0, sizeof(prime));
  
    // Finding the prime number up to R.
    sieve(prime, R);
  
    // Initialse frequency of all digit to 0.
    int freq[10] = { 0 };
    int val;
  
    // For all number between L to R, check if prime
    // or not. If prime, incrementing the frequency
    // of digits present in the prime number.
    for (int i = L; i <= R; i++)
    {
        if (!prime[i])
        {
            int p = i; // If i is prime
            while (p)
            {
                freq[p%10]++;
                p /= 10;
            }
        }
    }
  
    // Finding digit with highest frequency.
    int max = freq[0], ans = 0;
    for (int j = 1; j < 10; j++)
    {
        if (max <= freq[j])
        {
            max = freq[j];
            ans = j;
        }
    }
  
    return ans;
}
  
// Driven Program
int main()
{
    int L = 1, R = 20;
  
    cout << maxDigitInPrimes(L, R) << endl;
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find the highest occurring digit
// in prime numbers in a range L to R.
import java.util.Arrays;
  
class GFG {
      
    // Sieve of Eratosthenes
    static void sieve(boolean prime[], int n) {
  
        for (int p = 2; p * p <= n; p++) {
            if (prime[p] == false)
                for (int i = p * 2; i <= n; i += p)
                    prime[i] = true;
        }
    }
      
    // Returns maximum occurring digits in primes
    // from l to r.
    static int maxDigitInPrimes(int L, int R) {
  
        boolean prime[] = new boolean[R + 1];
        Arrays.fill(prime, false);
      
        // Finding the prime number up to R.
        sieve(prime, R);
      
        // Initialse frequency of all digit to 0.
        int freq[] = new int[10];
        int val;
      
        // For all number between L to R, check if 
        // prime or not. If prime, incrementing 
        // the frequency of digits present in the 
        // prime number.
        for (int i = L; i <= R; i++) {
  
            if (!prime[i]) {
                int p = i; // If i is prime
  
                while (p > 0) {
                freq[p % 10]++;
                p /= 10;
                }
            }
        }
      
        // Finding digit with highest frequency.
        int max = freq[0], ans = 0;
  
        for (int j = 1; j < 10; j++) {
            if (max <= freq[j]) {
                max = freq[j];
                ans = j;
            }
        }
      
        return ans;
    }
      
    // Driver code
    public static void main(String[] args) {
        int L = 1, R = 20;
        System.out.println(maxDigitInPrimes(L, R));
    }
}
  
// This code is contributed by Anant Agarwal.
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 program to find the highest 
# occurring digit in prime numbers
# in a range L to R.
  
# Sieve of Eratosthenes
def sieve(prime, n):
    p = 2
    while p * p <= n :
        if (prime[p] == False):
            for i in range(p * 2, n, p):
                prime[i] = True
                  
        p += 1
  
# Returns maximum occurring digits
# in primes from l to r.
def maxDigitInPrimes(L, R):
  
    prime = [0] * (R + 1)
  
    # Finding the prime number up to R.
    sieve(prime, R)
  
    # Initialse frequency of all
    # digit to 0.
    freq = [0] * 10
  
    # For all number between L to R, 
    # check if prime or not. If prime,
    # incrementing the frequency
    # of digits present in the prime number.
    for i in range(L, R + 1):
        if (not prime[i]):
            p = i # If i is prime
            while (p):
                freq[p % 10] += 1
                p //= 10
  
    # Finding digit with highest frequency.
    max = freq[0]
    ans = 0
    for j in range(1, 10):
        if (max <= freq[j]):
            max = freq[j]
            ans = j
  
    return ans
  
# Driver Code
if __name__=="__main__":
      
    L = 1
    R = 20
  
    print(maxDigitInPrimes(L, R))
  
# This code is contributed by ita_c
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find the highest 
// occurring digit in prime numbers 
// in a range L to R.
using System;
  
class GFG {
      
    // Sieve of Eratosthenes
    static void sieve(bool []prime, int n)
    {
        for (int p = 2; p * p <= n; p++) 
        {
            if (prime[p] == false)
                for (int i = p * 2; i <= n; i += p)
                    prime[i] = true;
        }
    }
      
    // Returns maximum occurring digits
    // in primes from l to r.
    static int maxDigitInPrimes(int L, int R) {
  
        bool []prime = new bool[R + 1];
        for(int i = 0; i < R+1; i++)
        prime[i] = false;
  
        // Finding the prime number up to R.
        sieve(prime, R);
      
        // Initialse frequency of all digit to 0.
        int []freq = new int[10];
      
      
        // For all number between L to R, check if 
        // prime or not. If prime, incrementing 
        // the frequency of digits present in the 
        // prime number.
        for (int i = L; i <= R; i++) {
  
            if (!prime[i])
            {
                int p = i; // If i is prime
  
                while (p > 0) {
                freq[p % 10]++;
                p /= 10;
                }
            }
        }
      
        // Finding digit with highest frequency.
        int max = freq[0], ans = 0;
  
        for (int j = 1; j < 10; j++) 
        {
            if (max <= freq[j]) {
                max = freq[j];
                ans = j;
            }
        }
        return ans;
    }
      
    // Driver code
    public static void Main() 
    {
        int L = 1, R = 20;
        Console.Write(maxDigitInPrimes(L, R));
    }
}
  
// This code is contributed by nitin mittal.
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find the highest occurring 
// digit in prime numbers in a range L to R.
  
// Sieve of Eratosthenes
function sieve(&$prime, $n)
{
    for ($p = 2; $p * $p <= $n; $p++)
    {
        if ($prime[$p] == false)
            for ($i = $p * 2; 
                 $i <= $n; $i += $p)
                $prime[$i] = true;
    }
}
  
// Returns maximum occurring digits 
// in primes from l to r.
function maxDigitInPrimes($L, $R)
{
    $prime = array_fill(0, $R + 1, false);
  
    // Finding the prime number up to R.
    sieve($prime, $R);
  
    // Initialse frequency of all digit to 0.
    $freq = array_fill(0, 10, 0);
  
    // For all number between L to R, check 
    // if prime or not. If prime, incrementing 
    // the frequency of digits present in the
    // prime number.
    for ($i = $L; $i <= $R; $i++)
    {
        if (!$prime[$i])
        {
            $p = $i; // If i is prime
            while ($p)
            {
                $freq[$p % 10]++;
                $p = (int)($p / 10);
            }
        }
    }
  
    // Finding digit with highest frequency.
    $max = $freq[0];
    $ans = 0;
    for ($j = 1; $j < 10; $j++)
    {
        if ($max <= $freq[$j])
        {
            $max = $freq[$j];
            $ans = $j;
        }
    }
  
    return $ans;
}
  
// Driver Code
$L = 1; 
$R = 20;
  
echo maxDigitInPrimes($L, $R);
  
// This code is contributed by mits
?>
chevron_right


Output:
1

This article is contributed by >Anuj Chauhan(anuj0503). If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.




Improved By : nitin mittal, Ita_c, Mithun Kumar



Article Tags :