Find Harmonic mean using Arithmetic mean and Geometric mean

Given two numbers, first calculate arithmetic mean and geometric mean of these two numbers. Using the arithmetic mean and geometric mean so calculated, find the harmonic mean between the two numbers.

Examples:

Input : a = 2
        b = 4
Output : 2.666

Input : a = 5
        b = 15
Output : 7.500

Arithmetic Mean: Arithmetic Mean ‘AM’ between two numbers a and b is such a number that AM-a = b-AM. Thus, if we are given these two numbers, the arithmetic mean AM = 1/2(a+b)
Geometric Mean: Geometric Mean ‘GM’ between two numbers a and b is such a number that GM/a = b/GM. Thus, if we are given these two numbers, the geometric mean GM = sqrt(a*b)

Harmonic Mean: Harmonic Mean ‘HM’ between two numbers a and b is such a number that 1/HM – 1/a = 1/b – 1/HM. Thus, if we are given these two numbers, the harmonic mean HM = 2ab/a+b

Now, we also know that GM^2 = AM * HM

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of compution of
// arithmetic mean, geometric mean
// and harmonic mean
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate arithmetic 
// mean, geometric mean and harmonic mean
double compute(int a, int b)
{
  
    double AM, GM, HM;
  
    AM = (a + b) / 2;
    GM = sqrt(a * b);
    HM = (GM * GM) / AM;
    return HM;
}
  
// Driver function
int main()
{
  
    int a = 5, b = 15;
    double HM = compute(a, b);
    cout << "Harmonic Mean between " << a 
          << " and " << b << " is " << HM ;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of compution of
// arithmetic mean, geometric mean
// and harmonic mean
import java.io.*;
  
class GeeksforGeeks {
      
    // Function to calculate arithmetic 
    // mean, geometric mean and harmonic mean
    static double compute(int a, int b)
    {
  
        double AM, GM, HM;
  
        AM = (a + b) / 2;
        GM = Math.sqrt(a * b);
        HM = (GM * GM) / AM;
        return HM;
    }
      
    // Driver function
    public static void main(String args[])
    {
        int a = 5, b = 15;
        double HM = compute(a, b);
        String str = "";
        str = str + HM;
        System.out.print("Harmonic Mean between "  
                         + a + " and " + b + " is "  
                         + str.substring(0, 5));
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python 3 implementation of compution
# of arithmetic mean, geometric mean
# and harmonic mean
  
import math 
  
# Function to calculate arithmetic 
# mean, geometric mean and harmonic mean
def compute( a, b) :
    AM = (a + b) / 2
    GM = math.sqrt(a * b)
    HM = (GM * GM) / AM
    return HM
  
# Driver function
a = 5
b = 15
HM = compute(a, b)
print("Harmonic Mean between " , a,
      " and ", b , " is " , HM )
  
  
# This code is contributed by Nikita Tiwari.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of compution of
// arithmetic mean, geometric mean
// and harmonic mean
using System;
  
class GeeksforGeeks {
      
    // Function to calculate arithmetic 
    // mean, geometric mean and harmonic mean
    static double compute(int a, int b)
    {
  
        double AM, GM, HM;
  
        AM = (a + b) / 2;
        GM = Math.Sqrt(a * b);
        HM = (GM * GM) / AM;
        return HM;
    }
      
    // Driver function
    public static void Main()
    {
        int a = 5, b = 15;
        double HM = compute(a, b);
        Console.WriteLine("Harmonic Mean between "
                        + a + " and " + b + " is "
                        +HM);
    }
}
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of compution of
// arithmetic mean, geometric mean
// and harmonic mean
  
// Function to calculate arithmetic 
// mean, geometric mean and harmonic mean
function compute( $a, $b)
{
  
    $AM;
    $GM;
    $HM;
  
    $AM = ($a + $b) / 2;
    $GM = sqrt($a * $b);
    $HM = ($GM * $GM) / $AM;
    return $HM;
}
  
// Driver Code
    $a = 5;
    $b = 15;
    $HM = compute($a, $b);
    echo"Harmonic Mean between " .$a.
        " and " .$b. " is " .$HM ;
    return 0;
// This code is contributed by nitin mittal.
?>

chevron_right



Output:

Harmonic Mean between 5 and 15 is 7.500


My Personal Notes arrow_drop_up

Waba Laba Dub Dub

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nitin mittal, Mithun Kumar