Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find four factors of N with maximum product and sum equal to N

  • Difficulty Level : Medium
  • Last Updated : 06 Sep, 2021

Given an integer N. The task is to find all factors of N print the product of four factors of N such that: 

  • Sum of the four factors is equal to N.
  • Product of the four factors is maximum.

If it is not possible to find 4 such factors then print “Not possible”.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Note: All the four factors can be equal to each other to maximize the product.

Examples



Input : 24
Output : Product -> 1296
All factors are -> 1 2 3 4 6 8 12 24 
Choose the factor 6 four times,
Therefore, 6+6+6+6 = 24 and product is maximum.

Input : 100
Output : Product -> 390625
All the factors are -> 1 2 4 5 10 10 20 25 50 100 
Choose the factor 25 four times.

In the second example, the product will be maximum when the four factors will be equal to 25. The sum of four factors is equal to ‘N’. Though we can choose the same factor four times to maximize the product.

Below is the step by step algorithm to solve this problem:  

  1. First find the factors of a number ‘N’ by traversing from 1 to square root of ‘N’ and check if ‘i’ and ‘n/i’ divide N and store them in a vector.
  2. Sort the vector and print every element.
  3. Find three numbers to maximize the product with the fourth number, using three loops.
  4. Replace the next maximum product with the previous product.
  5. Print the product when you’ll find the four factors.

Below is the implementation of above approach:  

C++




// C++ program to find four factors of N
// with maximum product and sum equal to N
#include <bits/stdc++.h>
 
using namespace std;
 
// Function to find factors
// and to print those four factors
void findfactors(int n)
{
    vector<int> vec;
 
    // inserting all the factors in a vector s
    for (int i = 1; i * i <= n; i++) {
        if (n % i == 0) {
            vec.push_back(i);
            vec.push_back(n / i);
        }
    }
 
    // sort the vector
    sort(vec.begin(), vec.end());
 
    // print all the factors
    cout << "All the factors are -> ";
    for (int i = 0; i < vec.size(); i++)
        cout << vec[i] << " ";
    cout << endl;
 
    // Any elements is divisible by 1
    int maxProduct = 1;
    bool flag = 1;
 
    // using three loop we'll find
    // the three maximum factors
    for (int i = 0; i < vec.size(); i++) {
        for (int j = i; j < vec.size(); j++) {
            for (int k = j; k < vec.size(); k++) {
                // storing the fourth factor in y
                int y = n - vec[i] - vec[j] - vec[k];
 
                // if the fourth factor become negative
                // then break
                if (y <= 0)
                    break;
 
                // we will replace more optimum number
                // than the previous one
                if (n % y == 0) {
                    flag = 0;
                    maxProduct = max(vec[i] * vec[j] * vec[k] * y,
                                                    maxProduct);
                }
            }
        }
    }
 
    // print the product if the numbers exist
    if (flag == 0)
        cout << "Product is -> " << maxProduct << endl;
 
    else
        cout << "Not possible" << endl;
}
 
// Driver code
int main()
{
    int n;
    n = 50;
 
    findfactors(n);
     
    return 0;
}

Java




import java.util.Collections;
import java.util.Vector;
 
// Java program to find four factors of N
// with maximum product and sum equal to N
class GFG
{
 
    // Function to find factors
    // and to print those four factors
    static void findfactors(int n)
    {
        Vector<Integer> vec = new Vector<Integer>();
 
        // inserting all the factors in a vector s
        for (int i = 1; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                vec.add(i);
                vec.add(n / i);
            }
        }
 
        // sort the vector
        Collections.sort(vec);
 
        // print all the factors
        System.out.println("All the factors are -> ");
        for (int i = 0; i < vec.size(); i++)
        {
            System.out.print(vec.get(i) + " ");
        }
        System.out.println();
 
        // Any elements is divisible by 1
        int maxProduct = 1;
        boolean flag = true;
 
        // using three loop we'll find
        // the three maximum factors
        for (int i = 0; i < vec.size(); i++)
        {
            for (int j = i; j < vec.size(); j++)
            {
                for (int k = j; k < vec.size(); k++)
                {
                    // storing the fourth factor in y
                    int y = n - vec.get(i) - vec.get(j) -
                                    vec.get(k);
 
                    // if the fourth factor become negative
                    // then break
                    if (y <= 0)
                    {
                        break;
                    }
 
                    // we will replace more optimum number
                    // than the previous one
                    if (n % y == 0)
                    {
                        flag = false;
                        maxProduct = Math.max(vec.get(i) * vec.get(j) *
                                            vec.get(k) * y, maxProduct);
                    }
                }
            }
        }
 
        // print the product if the numbers exist
        if (flag == false)
        {
            System.out.println("Product is -> " + maxProduct);
        }
        else
        {
            System.out.println("Not possible");
        }
    }
 
    // Driver code
    public static void main(String[] args)
    {
        int n;
        n = 50;
        findfactors(n);
    }
}
 
// This code is contributed by PrinciRaj1992

Python3




# Python 3 to find four factors
# of N with maximum product and
# sum equal to N
 
# import every thing from
# math library
from math import *
 
# Function to find factors
# and to print those four factors
def findfactors(n) :
    vec = []
 
    # inserting all the factors
    # in a list vec
    for i in range(1, int(sqrt(n)) + 1) :
        if n % i == 0 :
            vec.append(i)
            vec.append(n // i)
 
    # sort the list
    vec.sort()
     
    print("All the factors are -> ",
                           end = "")
     
    # print all the factors
    for i in range(len(vec)) :
        print(vec[i], end = " ")
    print()
 
    # Any elements is divisible by 1
    maxProduct = 1
    flag = 1
 
    # using three loop we'll find
    # the three maximum factors
    for i in range(0, len(vec)) :
        for j in range(i, len(vec)) :
            for k in range(j, len(vec)) :
 
                # storing the fourth factor in y
                y = n - vec[i] - vec[j] - vec[k]
 
                # if the fourth factor become
                # negative then break
                if y <= 0 :
                    break
 
                # we will replace more optimum
                # number than the previous one
                if n % y == 0 :
                    flag = 0
                    maxProduct = max(vec[i] * vec[j] *
                                     vec[k] * y , maxProduct)
 
    # print the product if the numbers exist
    if flag == 0 :
        print("Product is - >", maxProduct)
    else :
        print("Not possible")
 
# Driver Code
if __name__ == "__main__" :
    n = 50
 
    # function calling
    findfactors(n)
     
# This code is contributed by ANKITRAI1

C#




// C# program to find four factors of N
// with maximum product and sum equal to N
using System;
using System.Collections.Generic;
 
class GFG
{
 
    // Function to find factors
    // and to print those four factors
    static void findfactors(int n)
    {
        List<int> vec = new List<int>();
 
        // inserting all the factors in a vector s
        for (int i = 1; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                vec.Add(i);
                vec.Add(n / i);
            }
        }
 
        // sort the vector
        vec.Sort();
 
        // print all the factors
        Console.WriteLine("All the factors are -> ");
        for (int i = 0; i < vec.Count; i++)
        {
            Console.Write(vec[i] + " ");
        }
        Console.WriteLine();
 
        // Any elements is divisible by 1
        int maxProduct = 1;
        Boolean flag = true;
 
        // using three loop we'll find
        // the three maximum factors
        for (int i = 0; i < vec.Count; i++)
        {
            for (int j = i; j < vec.Count; j++)
            {
                for (int k = j; k < vec.Count; k++)
                {
                    // storing the fourth factor in y
                    int y = n - vec[i] - vec[j] -
                                         vec[k];
 
                    // if the fourth factor become negative
                    // then break
                    if (y <= 0)
                    {
                        break;
                    }
 
                    // we will replace more optimum number
                    // than the previous one
                    if (n % y == 0)
                    {
                        flag = false;
                        maxProduct = Math.Max(vec[i] * vec[j] *
                                              vec[k] * y, maxProduct);
                    }
                }
            }
        }
 
        // print the product if the numbers exist
        if (flag == false)
        {
            Console.WriteLine("Product is -> " +
                                    maxProduct);
        }
        else
        {
            Console.WriteLine("Not possible");
        }
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        int n;
        n = 50;
        findfactors(n);
    }
}
 
// This code is contributed by Rajput-Ji

PHP




<?php
// PHP program to find four factors
// of N with maximum product and
// sum equal to N
 
// Function to find factors
// and to print those four factors
function findfactors($n)
{
    $vec = array();
     
    // inserting all the
    // factors in a vector s
    for ($i = 1; $i * $i <= $n; $i++)
    {
        if ($n % $i == 0)
        {
            array_push($vec, $i);
            array_push($vec, ($n / $i));
        }
    }
 
    // sort the vector
    sort($vec);
 
    // print all the factors
    echo "All the factors are -> ";
    for ($i = 0; $i < sizeof($vec); $i++)
        echo $vec[$i] . " ";
    echo "\n";
 
    // Any elements is divisible by 1
    $maxProduct = 1;
    $flag = 1;
 
    // using three loop we'll find
    // the three maximum factors
    for ($i = 0; $i < sizeof($vec); $i++)
    {
        for ($j = $i;
             $j < sizeof($vec); $j++)
        {
            for ($k = $j;
                 $k < sizeof($vec); $k++)
            {
                // storing the fourth factor in y
                $y = $n - $vec[$i] -
                          $vec[$j] - $vec[$k];
 
                // if the fourth factor become
                // negative then break
                if ($y <= 0)
                    break;
 
                // we will replace more optimum
                // number than the previous one
                if ($n % $y == 0)
                {
                    $flag = 0;
                    $maxProduct = max($vec[$i] * $vec[$j] *
                                      $vec[$k] * $y, $maxProduct);
                }
            }
        }
    }
 
    // print the product if
    // the numbers exist
    if ($flag == 0)
        echo "Product is -> " .
             $maxProduct ."\n";
 
    else
        echo "Not possible" ."\n";
}
 
// Driver code
$n = 50;
findfactors($n);
     
// This code is contributed
// by ChitraNayal
?>

Javascript




<script>
 
// Javascript program to find four factors of N
// with maximum product and sum equal to N
     
    // Function to find factors
    // and to print those four factors
    function findfactors(n)
    {
        let vec = [];
        // inserting all the factors in a vector s
        for (let i = 1; i * i <= n; i++)
        {
            if (n % i == 0)
            {
                vec.push(i);
                vec.push(Math.floor(n / i));
            }
        }
   
        // sort the vector
        vec.sort(function(a,b){return a-b;});
   
        // print all the factors
        document.write("All the factors are -> ");
        for (let i = 0; i < vec.length; i++)
        {
            document.write(vec[i] + " ");
        }
        document.write("<br>");
   
        // Any elements is divisible by 1
        let maxProduct = 1;
        let flag = true;
   
        // using three loop we'll find
        // the three maximum factors
        for (let i = 0; i < vec.length; i++)
        {
            for (let j = i; j < vec.length; j++)
            {
                for (let k = j; k < vec.length; k++)
                {
                    // storing the fourth factor in y
                    let y = n - vec[i] - vec[j] -
                                    vec[k];
   
                    // if the fourth factor
                    // become negative
                    // then break
                    if (y <= 0)
                    {
                        break;
                    }
   
                    // we will replace more
                    // optimum number
                    // than the previous one
                    if (n % y == 0)
                    {
                        flag = false;
                        maxProduct = Math.max(vec[i] *
                        vec[j] * vec[k] * y, maxProduct);
                    }
                }
            }
        }
   
        // print the product if the numbers exist
        if (flag == false)
        {
            document.write("Product is -> " + maxProduct);
        }
        else
        {
            document.write("Not possible");
        }
    }
     
    // Driver code
    let n = 50;
    findfactors(n);
         
 
 
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
All the factors are -> 1 2 5 10 25 50 
Product is -> 12500

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!