Skip to content
Related Articles

Related Articles

Improve Article

Find all factors of a natural number | Set 1

  • Difficulty Level : Easy
  • Last Updated : 06 Aug, 2021

Given a natural number n, print all distinct divisors of it.

Examples:

 Input : n = 10       
 Output: 1 2 5 10

 Input:  n = 100
 Output: 1 2 4 5 10 20 25 50 100

 Input:  n = 125
 Output: 1 5 25 125

Note that this problem is different from finding all prime factors.

A Naive Solution would be to iterate all the numbers from 1 to n, checking if that number divides n and printing it. Below is a program for the same:



C++




// C++ implementation of Naive method to print all
// divisors
#include <iostream>
using namespace std;
 
// function to print the divisors
void printDivisors(int n)
{
    for (int i = 1; i <= n; i++)
        if (n % i == 0)
            cout <<" " << i;
}
 
/* Driver program to test above function */
int main()
{
    cout <<"The divisors of 100 are: \n";
    printDivisors(100);
    return 0;
}
 
// this code is contributed by shivanisinghss2110

C




// C implementation of Naive method to print all
// divisors
#include<stdio.h>
 
// function to print the divisors
void printDivisors(int n)
{
    for (int i=1;i<=n;i++)
        if (n%i==0)
            printf("%d ",i);
}
 
/* Driver program to test above function */
int main()
{
    printf("The divisors of 100 are: \n");
    printDivisors(100);
    return 0;
}

Java




// Java implementation of Naive method to print all
// divisors
 
class Test
{
    // method to print the divisors
    static void printDivisors(int n)
    {
        for (int i=1;i<=n;i++)
            if (n%i==0)
                System.out.print(i+" ");
    }
 
    // Driver method
    public static void main(String args[])
    {
        System.out.println("The divisors of 100 are: ");
        printDivisors(100);;
    }
}

Python




# Python implementation of Naive method
# to print all divisors
 
# method to print the divisors
def printDivisors(n) :
    i = 1
    while i <= n :
        if (n % i==0) :
            print i,
        i = i + 1
         
# Driver method
print "The divisors of 100 are: "
printDivisors(100)
 
#This code is contributed by Nikita Tiwari.

C#




// C# implementation of Naive method
// to print all divisors
using System;
 
class GFG {
     
    // method to print the divisors
    static void printDivisors(int n)
    {
        for (int i = 1; i <= n; i++)
            if (n % i == 0)
                Console.Write( i + " ");
    }
 
    // Driver method
    public static void Main()
    {
        Console.Write("The divisors of",
                          " 100 are: ");
        printDivisors(100);;
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP implementation of Naive
// method to print all divisors
 
// function to print the divisors
function printDivisors($n)
{
    for ($i = 1; $i <= $n; $i++)
        if ($n % $i == 0)
            echo $i," ";
}
 
// Driver Code
echo "The divisors of 100 are:\n";
printDivisors(100);
 
// This code is contributed by ajit
?>

Javascript




<script>
 
// Javascript implementation of Naive method to print all
// divisors
 
// function to print the divisors
function printDivisors(n)
{
    for (i=1;i<=n;i++)
        if (n%i==0)
            document.write(i+ " ");
}
 
/* Driver program to test above function */
 
    document.write("The divisors of 100 are:" + "<br>");
    printDivisors(100);
     
// This code is contributed by Mayank Tyagi
     
</script>

Output:

The divisors of 100 are: 
1 2 4 5 10 20 25 50 100

Time Complexity : O(n) 
Auxiliary Space : O(1)

Can we improve the above solution? 
If we look carefully, all the divisors are present in pairs. For example if n = 100, then the various pairs of divisors are: (1,100), (2,50), (4,25), (5,20), (10,10)
Using this fact we could speed up our program significantly. 
We, however, have to be careful if there are two equal divisors as in the case of (10, 10). In such case, we’d print only one of them. 

Below is an implementation for the same:

C++




// A Better (than Naive) Solution to find all divisiors
#include <iostream>
#include <math.h>
using namespace std;
 
// Function to print the divisors
void printDivisors(int n)
{
    // Note that this loop runs till square root
    for (int i=1; i<=sqrt(n); i++)
    {
        if (n%i == 0)
        {
            // If divisors are equal, print only one
            if (n/i == i)
                cout <<" "<< i;
 
            else // Otherwise print both
                cout << " "<< i << " " << n/i;
        }
    }
}
 
/* Driver program to test above function */
int main()
{
    cout <<"The divisors of 100 are: \n";
    printDivisors(100);
    return 0;
}
 
// this code is contributed by shivanisinghss2110

C




// A Better (than Naive) Solution to find all divisiors
#include <stdio.h>
#include <math.h>
 
// Function to print the divisors
void printDivisors(int n)
{
    // Note that this loop runs till square root
    for (int i=1; i<=sqrt(n); i++)
    {
        if (n%i == 0)
        {
            // If divisors are equal, print only one
            if (n/i == i)
                printf("%d ", i);
 
            else // Otherwise print both
                printf("%d %d ", i, n/i);
        }
    }
}
 
/* Driver program to test above function */
int main()
{
    printf("The divisors of 100 are: \n");
    printDivisors(100);
    return 0;
}

Java




// A Better (than Naive) Solution to find all divisors
 
class Test
{
    // method to print the divisors
    static void printDivisors(int n)
    {
        // Note that this loop runs till square root
        for (int i=1; i<=Math.sqrt(n); i++)
        {
            if (n%i==0)
            {
                // If divisors are equal, print only one
                if (n/i == i)
                    System.out.print(" "+ i);
      
                else // Otherwise print both
                    System.out.print(i+" " + n/i + " " );
            }
        }
    }
 
    // Driver method
    public static void main(String args[])
    {
        System.out.println("The divisors of 100 are: ");
        printDivisors(100);;
    }
}

Python




# A Better (than Naive) Solution to find all divisiors
import math
 
# method to print the divisors
def printDivisors(n) :
     
    # Note that this loop runs till square root
    i = 1
    while i <= math.sqrt(n):
         
        if (n % i == 0) :
             
            # If divisors are equal, print only one
            if (n / i == i) :
                print i,
            else :
                # Otherwise print both
                print i , n/i,
        i = i + 1
 
# Driver method
print "The divisors of 100 are: "
printDivisors(100)
 
#This code is contributed by Nikita Tiwari.

C#




// A Better (than Naive) Solution to
// find all divisors
using System;
 
class GFG {
     
    // method to print the divisors
    static void printDivisors(int n)
    {
         
        // Note that this loop runs
        // till square root
        for (int i = 1; i <= Math.Sqrt(n);
                                      i++)
        {
            if (n % i == 0)
            {
                 
                // If divisors are equal,
                // print only one
                if (n / i == i)
                    Console.Write(i + " ");
                 
                // Otherwise print both
                else
                    Console.Write(i + " "
                            + n / i + " ");
            }
        }
    }
 
    // Driver method
    public static void Main()
    {
        Console.Write("The divisors of "
                          + "100 are: \n");
        printDivisors(100);
    }
}
 
// This code is contributed by Smitha

PHP




<?php
// A Better (than Naive) Solution
// to find all divisiors
 
// Function to print the divisors
function printDivisors($n)
{
     
    // Note that this loop
    // runs till square root
    for ($i = 1; $i <= sqrt($n); $i++)
    {
        if ($n%$i == 0)
        {
             
            // If divisors are equal,
            // print only one
            if ($n / $i == $i)
                echo $i," ";
 
            // Otherwise print both
            else
                echo $i," ", $n/$i," ";
        }
    }
}
 
    // Driver Code
    echo "The divisors of 100 are: \n";
    printDivisors(100);
     
// This code is contributed by anuj_67.
 
 
?>

Javascript




<script>
 
// A Better (than Naive) Solution to find all divisiors
 
// Function to print the divisors
function printDivisors(n)
{
     
    // Note that this loop runs till square root
    for(let i = 1; i <= Math.sqrt(n); i++)
    {
        if (n % i == 0)
        {
             
            // If divisors are equal, print only one
            if (parseInt(n / i, 10) == i)
                document.write(i);
                 
            // Otherwise print both
            else
                document.write(i + " " +
                      parseInt(n / i, 10) + " ");
        }
    }
}
 
// Driver code
document.write("The divisors of 100 are: </br>");
printDivisors(100);
 
// This code is contributed by divyesh072019
 
</script>

Output:

The divisors of 100 are: 
1 100 2 50 4 25 5 20 10

Time Complexity: O(sqrt(n)) 
Auxiliary Space : O(1)

However there is still a minor problem in the solution, can you guess? 
Yes! the output is not in a sorted fashion which we had got using the brute-force technique. Please refer below for an O(sqrt(n)) time solution that prints divisors in sorted order.
Find all divisors of a natural number | Set 2
This article is contributed by Ashutosh Kumar. Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :