# Find all distinct subset (or subsequence) sums of an array

• Difficulty Level : Medium
• Last Updated : 02 Jun, 2021

Given a set of integers, find a distinct sum that can be generated from the subsets of the given sets and print them in increasing order. It is given that sum of array elements is small.

Examples:

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

```Input  : arr[] = {1, 2, 3}
Output : 0 1 2 3 4 5 6
Distinct subsets of given set are
{}, {1}, {2}, {3}, {1,2}, {2,3},
{1,3} and {1,2,3}.  Sums of these
subsets are 0, 1, 2, 3, 3, 5, 4, 6
After removing duplicates, we get
0, 1, 2, 3, 4, 5, 6

Input : arr[] = {2, 3, 4, 5, 6}
Output : 0 2 3 4 5 6 7 8 9 10 11 12
13 14 15 16 17 18 20

Input : arr[] = {20, 30, 50}
Output : 0 20 30 50 70 80 100```

The naive solution for this problem is to generate all the subsets, store their sums in a hash set and finally print all keys from the hash set.

## C++

 `// C++ program to print distinct subset sums of``// a given array.``#include``using` `namespace` `std;` `// sum denotes the current sum of the subset``// currindex denotes the index we have reached in``// the given array``void` `distSumRec(``int` `arr[], ``int` `n, ``int` `sum,``                ``int` `currindex, unordered_set<``int``> &s)``{``    ``if` `(currindex > n)``        ``return``;` `    ``if` `(currindex == n)``    ``{``        ``s.insert(sum);``        ``return``;``    ``}` `    ``distSumRec(arr, n, sum + arr[currindex],``                            ``currindex+1, s);``    ``distSumRec(arr, n, sum, currindex+1, s);``}` `// This function mainly calls recursive function``// distSumRec() to generate distinct sum subsets.``// And finally prints the generated subsets.``void` `printDistSum(``int` `arr[], ``int` `n)``{``    ``unordered_set<``int``> s;``    ``distSumRec(arr, n, 0, 0, s);` `    ``// Print the result``    ``for` `(``auto` `i=s.begin(); i!=s.end(); i++)``        ``cout << *i << ``" "``;``}` `// Driver code``int` `main()``{``    ``int` `arr[] = {2, 3, 4, 5, 6};``    ``int` `n = ``sizeof``(arr)/``sizeof``(arr);``    ``printDistSum(arr, n);``    ``return` `0;``}`

## Java

 `// Java program to print distinct``// subset sums of a given array.``import` `java.io.*;``import` `java.util.*;` `class` `GFG``{``    ``// sum denotes the current sum``    ``// of the subset currindex denotes``    ``// the index we have reached in``    ``// the given array``    ``static` `void` `distSumRec(``int` `arr[], ``int` `n, ``int` `sum,``                          ``int` `currindex, HashSet s)``    ``{``        ``if` `(currindex > n)``            ``return``;` `        ``if` `(currindex == n) {``            ``s.add(sum);``            ``return``;``        ``}` `        ``distSumRec(arr, n, sum + arr[currindex],``                    ``currindex + ``1``, s);``        ``distSumRec(arr, n, sum, currindex + ``1``, s);``    ``}` `    ``// This function mainly calls``    ``// recursive function distSumRec()``    ``// to generate distinct sum subsets.``    ``// And finally prints the generated subsets.``    ``static` `void` `printDistSum(``int` `arr[], ``int` `n)``    ``{``        ``HashSet s = ``new` `HashSet<>();``        ``distSumRec(arr, n, ``0``, ``0``, s);` `        ``// Print the result``        ``for` `(``int` `i : s)``            ``System.out.print(i + ``" "``);``    ``}``    ` `    ``//Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``2``, ``3``, ``4``, ``5``, ``6` `};``        ``int` `n = arr.length;``        ``printDistSum(arr, n);``    ``}``}` `// This code is contributed by Gitanjali.`

## Python3

 `# Python 3 program to print distinct subset sums of``# a given array.` `# sum denotes the current sum of the subset``# currindex denotes the index we have reached in``# the given array``def` `distSumRec(arr, n, ``sum``, currindex, s):``    ``if` `(currindex > n):``        ``return` `    ``if` `(currindex ``=``=` `n):``        ``s.add(``sum``)``        ``return` `    ``distSumRec(arr, n, ``sum` `+` `arr[currindex], currindex``+``1``, s)``    ``distSumRec(arr, n, ``sum``, currindex``+``1``, s)` `# This function mainly calls recursive function``# distSumRec() to generate distinct sum subsets.``# And finally prints the generated subsets.``def` `printDistSum(arr,n):``    ``s ``=` `set``()``    ``distSumRec(arr, n, ``0``, ``0``, s)` `    ``# Print the result``    ``for` `i ``in` `s:``        ``print``(i,end ``=` `" "``)` `# Driver code``if` `__name__ ``=``=` `'__main__'``:``    ``arr ``=` `[``2``, ``3``, ``4``, ``5``, ``6``]``    ``n ``=` `len``(arr)``    ``printDistSum(arr, n)` `# This code is contributed by``# Surendra_Gangwar`

## C#

 `// C# program to print distinct``// subset sums of a given array.``using` `System;``using` `System.Collections.Generic;` `class` `GFG``{``    ``// sum denotes the current sum``    ``// of the subset currindex denotes``    ``// the index we have reached in``    ``// the given array``    ``static` `void` `distSumRec(``int` `[]arr, ``int` `n, ``int` `sum,``                        ``int` `currindex, HashSet<``int``> s)``    ``{``        ``if` `(currindex > n)``            ``return``;` `        ``if` `(currindex == n)``        ``{``            ``s.Add(sum);``            ``return``;``        ``}` `        ``distSumRec(arr, n, sum + arr[currindex],``                    ``currindex + 1, s);``        ``distSumRec(arr, n, sum, currindex + 1, s);``    ``}` `    ``// This function mainly calls``    ``// recursive function distSumRec()``    ``// to generate distinct sum subsets.``    ``// And finally prints the generated subsets.``    ``static` `void` `printDistSum(``int` `[]arr, ``int` `n)``    ``{``        ``HashSet<``int``> s = ``new` `HashSet<``int``>();``        ``distSumRec(arr, n, 0, 0, s);` `        ``// Print the result``        ``foreach` `(``int` `i ``in` `s)``            ``Console.Write(i + ``" "``);``    ``}``    ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]arr = { 2, 3, 4, 5, 6 };``        ``int` `n = arr.Length;``        ``printDistSum(arr, n);``    ``}``}` `/* This code contributed by PrinciRaj1992 */`

## Javascript

 ``

Output:

`0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20`

The time complexity of the above naive recursive approach is O(2n).

The time complexity of the above problem can be improved using Dynamic Programming, especially when the sum of given elements is small. We can make a dp table with rows containing the size of the array and the size of the column will be the sum of all the elements in the array.

## C++

 `// C++ program to print distinct subset sums of``// a given array.``#include``using` `namespace` `std;` `// Uses Dynamic Programming to find distinct``// subset sums``void` `printDistSum(``int` `arr[], ``int` `n)``{``    ``int` `sum = 0;``    ``for` `(``int` `i=0; i

## Java

 `// Java program to print distinct``// subset sums of a given array.``import` `java.io.*;``import` `java.util.*;` `class` `GFG {` `    ``// Uses Dynamic Programming to``    ``// find distinct subset sums``    ``static` `void` `printDistSum(``int` `arr[], ``int` `n)``    ``{``        ``int` `sum = ``0``;``        ``for` `(``int` `i = ``0``; i < n; i++)``            ``sum += arr[i];` `        ``// dp[i][j] would be true if arr[0..i-1]``        ``// has a subset with sum equal to j.``        ``boolean``[][] dp = ``new` `boolean``[n + ``1``][sum + ``1``];` `        ``// There is always a subset with 0 sum``        ``for` `(``int` `i = ``0``; i <= n; i++)``            ``dp[i][``0``] = ``true``;` `        ``// Fill dp[][] in bottom up manner``        ``for` `(``int` `i = ``1``; i <= n; i++)``        ``{``            ``dp[i][arr[i - ``1``]] = ``true``;``            ``for` `(``int` `j = ``1``; j <= sum; j++)``            ``{``                ``// Sums that were achievable``                ``// without current array element``                ``if` `(dp[i - ``1``][j] == ``true``)``                ``{``                    ``dp[i][j] = ``true``;``                    ``dp[i][j + arr[i - ``1``]] = ``true``;``                ``}``            ``}``        ``}` `        ``// Print last row elements``        ``for` `(``int` `j = ``0``; j <= sum; j++)``            ``if` `(dp[n][j] == ``true``)``                ``System.out.print(j + ``" "``);``    ``}` `        ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `arr[] = { ``2``, ``3``, ``4``, ``5``, ``6` `};``        ``int` `n = arr.length;``        ``printDistSum(arr, n);``    ``}``}` `// This code is contributed by Gitanjali.`

## Python3

 `# Python3 program to prdistinct subset``# Sums of a given array.` `# Uses Dynamic Programming to find``# distinct subset Sums``def` `printDistSum(arr, n):` `    ``Sum` `=` `sum``(arr)``    ` `    ``# dp[i][j] would be true if arr[0..i-1]``    ``# has a subset with Sum equal to j.``    ``dp ``=` `[[``False` `for` `i ``in` `range``(``Sum` `+` `1``)]``                 ``for` `i ``in` `range``(n ``+` `1``)]``                 ` `    ``# There is always a subset with 0 Sum``    ``for` `i ``in` `range``(n ``+` `1``):``        ``dp[i][``0``] ``=` `True` `    ``# Fill dp[][] in bottom up manner``    ``for` `i ``in` `range``(``1``, n ``+` `1``):` `        ``dp[i][arr[i ``-` `1``]] ``=` `True` `        ``for` `j ``in` `range``(``1``, ``Sum` `+` `1``):``            ` `            ``# Sums that were achievable``            ``# without current array element``            ``if` `(dp[i ``-` `1``][j] ``=``=` `True``):``                ``dp[i][j] ``=` `True``                ``dp[i][j ``+` `arr[i ``-` `1``]] ``=` `True``            ` `    ``# Print last row elements``    ``for` `j ``in` `range``(``Sum` `+` `1``):``        ``if` `(dp[n][j] ``=``=` `True``):``            ``print``(j, end ``=` `" "``)` `# Driver code``arr ``=` `[``2``, ``3``, ``4``, ``5``, ``6``]``n ``=` `len``(arr)``printDistSum(arr, n)` `# This code is contributed``# by mohit kumar`

## C#

 `// C# program to print distinct``// subset sums of a given array.``using` `System;`` ` `class` `GFG {`` ` `    ``// Uses Dynamic Programming to``    ``// find distinct subset sums``    ``static` `void` `printDistSum(``int` `[]arr, ``int` `n)``    ``{``        ``int` `sum = 0;``        ``for` `(``int` `i = 0; i < n; i++)``            ``sum += arr[i];`` ` `        ``// dp[i][j] would be true if arr[0..i-1]``        ``// has a subset with sum equal to j.``        ``bool` `[,]dp = ``new` `bool``[n + 1,sum + 1];`` ` `        ``// There is always a subset with 0 sum``        ``for` `(``int` `i = 0; i <= n; i++)``            ``dp[i,0] = ``true``;`` ` `        ``// Fill dp[][] in bottom up manner``        ``for` `(``int` `i = 1; i <= n; i++)``        ``{``            ``dp[i,arr[i - 1]] = ``true``;``            ``for` `(``int` `j = 1; j <= sum; j++)``            ``{``                ``// Sums that were achievable``                ``// without current array element``                ``if` `(dp[i - 1,j] == ``true``)``                ``{``                    ``dp[i,j] = ``true``;``                    ``dp[i,j + arr[i - 1]] = ``true``;``                ``}``            ``}``        ``}`` ` `        ``// Print last row elements``        ``for` `(``int` `j = 0; j <= sum; j++)``            ``if` `(dp[n,j] == ``true``)``                ``Console.Write(j + ``" "``);``    ``}`` ` `    ``// Driver code``    ``public` `static` `void` `Main()``    ``{``        ``int` `[]arr = { 2, 3, 4, 5, 6 };``        ``int` `n = arr.Length;``        ``printDistSum(arr, n);``    ``}``}`` ` `// This code is contributed by nitin mittal.`

## Javascript

 ``

Output:

`0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20`

Time complexity of the above approach is O(n*sum) where n is the size of the array and sum is the sum of all the integers in the array.

This article is contributed by Karan Goyal. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.