Find distance between two nodes in the given Binary tree for Q queries

Given a binary tree having N nodes and weight of N-1 edges. The distance between two nodes is the sum of the weight of edges on the path between two nodes. Each query contains two integers U and V, the task is to find the distance between node U and V.

Examples:

Input:

Output: 3 5 12 12
Explanation:
Distance between nodes 1 to 3 = weight(1, 3) = 2
Distance between nodes 2 to 3 = weight(1, 2) + weight(1, 3) = 5
Distance between nodes 3 to 5 = weight(1, 3) + weight(1, 2) + weight(2, 5) = 12
Distance between nodes 4 to 5 = weight(4, 2) + weight(2, 5) = 12

Approach: The idea is to use LCA in a tree using Binary Lifting Technique.

  1. Binary Lifting is a Dynamic Programming approach where we pre-compute an array lca[i][j] where i = [1, n], j = [1, log(n)] and lca[i][j] contains 2j-th ancestor of node i.
    • For computing the values of lca[][], the following recursion may be used
      lca[i][j] =\begin{cases} parent[i] & \text{ ;if } j=0 \\ lca[lca[i][j - 1]][j - 1]  & \text{ ;if } j>0 \end{cases}
  2. As we will compute the lca[][] array we will also calculate the distance[][] where distance[i][j] contains the distance from node i to its 2j-th ancestor
    • For computing the values of dist[][], the following recursion may be used.
      dist[i][j] =\begin{cases} cost(i, parent[i]) & \text{ ;if } j=0  \\ dist[i][j] = dist[i][j - 1] + dist[lca[i][j - 1]][j - 1];   & \text{ ;if } j>0 \end{cases}
  3. After precomputation we find the distance between (u, v) as we find the least common ancestor of (u, v).

Below is the implementation of the above approach:



C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find distance
// between two nodes using LCA
  
#include <bits/stdc++.h>
using namespace std;
  
#define MAX 1000
  
#define log 10 // log2(MAX)
  
// Array to store the level
// of each node
int level[MAX];
  
int lca[MAX][log];
int dist[MAX][log];
  
// Vector to store tree
vector<pair<int, int> > graph[MAX];
  
void addEdge(int u, int v, int cost)
{
    graph[u].push_back({ v, cost });
    graph[v].push_back({ u, cost });
}
  
// Pre-Processing to calculate
// values of lca[][], dist[][]
void dfs(int node, int parent,
         int h, int cost)
{
    // Using recursion formula to
    // calculate the values
    // of lca[][]
    lca[node][0] = parent;
  
    // Storing the level of
    // each node
    level[node] = h;
    if (parent != -1) {
        dist[node][0] = cost;
    }
  
    for (int i = 1; i < log; i++) {
        if (lca[node][i - 1] != -1) {
  
            // Using recursion formula to
            // calculate the values of
            // lca[][] and dist[][]
            lca[node][i]
                = lca[lca[node]
                         [i - 1]]
                     [i - 1];
  
            dist[node][i]
                = dist[node][i - 1]
                  + dist[lca[node][i - 1]]
                        [i - 1];
        }
    }
  
    for (auto i : graph[node]) {
        if (i.first == parent)
            continue;
        dfs(i.first, node, 
h + 1, i.second);
    }
}
  
// Function to find the distance
// between given nodes u and v
void findDistance(int u, int v)
{
  
    int ans = 0;
  
    // The node which is present
    // farthest from the root node
    // is taken as v. If u is
    // farther from root node
    // then swap the two
    if (level[u] > level[v])
        swap(u, v);
  
    // Finding the ancestor of v
    // which is at same level as u
    for (int i = log - 1; i >= 0; i--) {
  
        if (lca[v][i] != -1
            && level[lca[v][i]]
                   >= level[u]) {
  
            // Adding distance of node
            // v till its 2^i-th ancestor
            ans += dist[v][i];
            v = lca[v][i];
        }
    }
  
    // If u is the ancestor of v
    // then u is the LCA of u and v
    if (v == u) {
  
        cout << ans << endl;
    }
  
    else {
  
        // Finding the node closest to the
        // root which is not the common
        // ancestor of u and v i.e. a node
        // x such that x is not the common
        // ancestor of u and v but lca[x][0] is
        for (int i = log - 1; i >= 0; i--) {
  
            if (lca[v][i] != lca[u][i]) {
  
                // Adding the distance
                // of v and u to
                // its 2^i-th ancestor
                ans += dist[u][i] + dist[v][i];
  
                v = lca[v][i];
                u = lca[u][i];
            }
        }
  
        // Adding the distance of u and v
        // to its first ancestor
        ans += dist[u][0] + dist[v][0];
  
        cout << ans << endl;
    }
}
  
// Driver Code
int main()
{
  
    // Number of nodes
    int n = 5;
  
    // Add edges with their cost
    addEdge(1, 2, 2);
    addEdge(1, 3, 3);
    addEdge(2, 4, 5);
    addEdge(2, 5, 7);
  
    // Initialising lca and dist values
    // with -1 and 0 respectively
    for (int i = 1; i <= n; i++) {
        for (int j = 0; j < log; j++) {
            lca[i][j] = -1;
            dist[i][j] = 0;
        }
    }
  
    // Perform DFS
    dfs(1, -1, 0, 0);
  
    // Query 1: {1, 3}
    findDistance(1, 3);
  
    // Query 2: {2, 3}
    findDistance(2, 3);
  
    // Query 3: {3, 5}
    findDistance(3, 5);
  
    return 0;
}

chevron_right


Output:

3
5
12

Time Complexity: The time taken in pre-processing is O(N logN) and every query takes O(logN) time. Therefore, overall time complexity of the solution is O(N logN).

competitive-programming-img




My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : nidhi_biet