Given an array of integers, find the closest smaller element for every element. If there is no smaller element then print -1

**Examples:**

Input : arr[] = {10, 5, 11, 6, 20, 12}

Output : 6, -1, 10, 5, 12, 11Input : arr[] = {10, 5, 11, 10, 20, 12}

Output : 5 -1 10 5 12 11

A **simple solution** is to run two nested loops. We pick an outer element one by one. For every picked element, we traverse remaining array and find closest smaller element. Time complexity of this solution is O(n*n)

A **better solution** is to use sorting. We sort all elements, then for every element, traverse toward left until we find a smaller element (Note that there can be multiple occurrences of an element).

An **efficient solution **is to use Self Balancing BST (Implemented as set in C++ and TreeSet in Java). In a Self Balancing BST, we can do both insert and closest smaller operations in O(Log n) time.

## C++

`// C++ program to find closest smaller value for` `// every array element` `#include <bits/stdc++.h>` `using` `namespace` `std;` ` ` `void` `closestSmaller(` `int` `arr[], ` `int` `n)` `{` ` ` `// Insert all array elements into a TreeSet` ` ` `set<` `int` `> ts;` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `ts.insert(arr[i]);` ` ` ` ` `// Find largest smaller element for every` ` ` `// array element` ` ` `for` `(` `int` `i = 0; i < n; i++)` ` ` `{` ` ` `auto` `smaller = ts.lower_bound(arr[i]);` ` ` `if` `(smaller == ts.begin())` ` ` `cout << -1 << ` `" "` `;` ` ` `else` ` ` `cout << *(--smaller) << ` `" "` `;` ` ` `}` `}` ` ` `// Driver Code` `int` `main()` `{` ` ` `int` `arr[] = {10, 5, 11, 6, 20, 12};` ` ` `int` `n = ` `sizeof` `(arr) / ` `sizeof` `(arr[0]);` ` ` ` ` `closestSmaller(arr, n);` ` ` ` ` `return` `0;` `}` ` ` `// This code is contributed by` `// sanjeev2552` |

## Java

`// Java program to find closest smaller value for` `// every array element` `import` `java.util.*;` ` ` `class` `TreeSetDemo {` ` ` `public` `static` `void` `closestSmaller(` `int` `[] arr)` ` ` `{` ` ` `// Insert all array elements into a TreeSet` ` ` `TreeSet<Integer> ts = ` `new` `TreeSet<Integer>();` ` ` `for` `(` `int` `i = ` `0` `; i < arr.length; i++)` ` ` `ts.add(arr[i]);` ` ` ` ` `// Find largest smaller element for every` ` ` `// array element` ` ` `for` `(` `int` `i = ` `0` `; i < arr.length; i++) {` ` ` `Integer smaller = ts.lower(arr[i]);` ` ` `if` `(smaller == ` `null` `)` ` ` `System.out.print(-` `1` `+ ` `" "` `);` ` ` `else` ` ` `System.out.print(smaller + ` `" "` `);` ` ` `}` ` ` `}` ` ` ` ` `public` `static` `void` `main(String[] args)` ` ` `{` ` ` `int` `[] arr = { ` `10` `, ` `5` `, ` `11` `, ` `6` `, ` `20` `, ` `12` `};` ` ` `closestSmaller(arr);` ` ` `}` `}` |

**Output:**

6 -1 10 5 12 11

Time Complexity : O(n Log n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the **DSA Self Paced Course** at a student-friendly price and become industry ready.