Find array sum using Bitwise OR after splitting given array in two halves after K circular shifts

Given an array A[] of length N, where N is an even number, the task is to answer Q independent queries where each query consists of a positive integer K representing the number of circular shifts performed on the array and find the sum of elements by performing Bitwise OR operation on the divided array.
Note: Each query begins with the original array.
Examples: 
 

Input: A[] = {12, 23, 4, 21, 22, 76}, Q = 1, K = 2 
Output: 117 
Explanation: 
Since K is 2, modified array A[]={22, 76, 12, 23, 4, 21}. 
Bitwise OR of first half of array = (22 | 76 | 12) = 94 
Bitwise OR of second half of array = (21 | 23 | 4) = 23 
Sum of OR values is 94 + 23 = 117
Input: A[] = {7, 44, 19, 86, 65, 39, 75, 101}, Q = 1, K = 4 
Output: 238 
Since K is 4, modified array A[]={65, 39, 75, 101, 7, 44, 19, 86}. 
Bitwise OR of first half of array = 111 
Bitwise OR of second half of array = 127 
Sum of OR values is 111 + 127 = 238 
 

 

Naive Approach: 
To solve the problem mentioned above the simplest approach is to shift each element of the array by K % (N / 2) and then traverse the array to calculate the OR of the two halves for every query. But this method is not efficient and hence can be optimized further.
Efficient Approach: 
To optimize the above mentioned approach we can take the help of Segment Tree data structure. 
 

Observation: 
 



  • We can observe that after exactly N / 2 right circular shifts the two halves of the array become the same as in the original array. This effectively reduces the number of rotations to K % (N / 2).
  • Performing a right circular shift is basically shifting the last element of the array to the front. So for any positive integer X performing X right circular shifts is equal to shifting the last X elements of the array to the front.

Following are the steps to solve the problem : 
 

Below is the implementation of the above approach:
 

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ Program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
#include <bits/stdc++.h>
const int MAX = 100005;
using namespace std;
 
// Array for storing
// the segment tree
int seg[4 * MAX];
 
// Function to build the segment tree
void build(int node, int l, int r, int a[])
{
    if (l == r)
        seg[node] = a[l];
 
    else {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node]
                     | seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
int query(int node, int l, int r,
          int start, int end, int a[])
{
    // Check for out of bound condition
    if (l > end or r < start)
        return 0;
 
    if (start <= l and r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                   start, end, a))
            | (query(2 * node + 1, mid + 1,
                     r, start, end, a)));
}
 
// Function to find the OR sum
void orsum(int a[], int n, int q, int k[])
{
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for (int j = 0; j < q; j++) {
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i, n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                           n / 2 - 1 - i, a)
                     | query(1, 0, n - 1,
                             n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print final answer to the query
        cout << temp << endl;
    }
}
 
// Driver Code
int main()
{
 
    int a[] = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = sizeof(a) / sizeof(a[0]);
 
    int q = 2;
 
    int k[q] = { 4, 2 };
 
    orsum(a, n, q, k);
 
    return 0;
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
import java.util.*;
 
class GFG{
     
static int MAX = 100005;
 
// Array for storing
// the segment tree
static int []seg = new int[4 * MAX];
 
// Function to build the segment tree
static void build(int node, int l,
                  int r, int a[])
{
    if (l == r)
        seg[node] = a[l];
 
    else
    {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
static int query(int node, int l, int r,
                 int start, int end, int a[])
{
     
    // Check for out of bound condition
    if (l > end || r < start)
        return 0;
 
    if (start <= l && r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                   start, end, a)) |
            (query(2 * node + 1, mid + 1,
                   r, start, end, a)));
}
 
// Function to find the OR sum
static void orsum(int a[], int n,
                  int q, int k[])
{
     
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for(int j = 0; j < q; j++)
    {
         
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i,
                        n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                           n / 2 - 1 - i, a) |
                     query(1, 0, n - 1,
                           n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print final answer to the query
        System.out.print(temp + "\n");
    }
}
 
// Driver Code
public static void main(String[] args)
{
 
    int a[] = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = a.length;
    int q = 2;
 
    int k[] = { 4, 2 };
 
    orsum(a, n, q, k);
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find Bitwise OR of two
# equal halves of an array after performing
# K right circular shifts
MAX = 100005
 
# Array for storing
# the segment tree
seg = [0] * (4 * MAX)
 
# Function to build the segment tree
def build(node, l, r, a):
 
    if (l == r):
        seg[node] = a[l]
 
    else:
        mid = (l + r) // 2
 
        build(2 * node, l, mid, a)
        build(2 * node + 1, mid + 1, r, a)
         
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1])
 
# Function to return the OR
# of elements in the range [l, r]
def query(node, l, r, start, end, a):
     
    # Check for out of bound condition
    if (l > end or r < start):
        return 0
 
    if (start <= l and r <= end):
        return seg[node]
 
    # Find middle of the range
    mid = (l + r) // 2
 
    # Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                       start, end, a)) |
            (query(2 * node + 1, mid + 1,
                       r, start, end, a)))
 
# Function to find the OR sum
def orsum(a, n, q, k):
 
    # Function to build the segment Tree
    build(1, 0, n - 1, a)
 
    # Loop to handle q queries
    for j in range(q):
         
        # Effective number of
        # right circular shifts
        i = k[j] % (n // 2)
 
        # Calculating the OR of
        # the two halves of the
        # array from the segment tree
 
        # OR of second half of the
        # array [n/2-i, n-1-i]
        sec = query(1, 0, n - 1, n // 2 - i,
                          n - i - 1, a)
 
        # OR of first half of the array
        # [n-i, n-1]OR[0, n/2-1-i]
        first = (query(1, 0, n - 1, 0,
                             n // 2 -
                             1 - i, a) |
                 query(1, 0, n - 1,
                             n - i,
                             n - 1, a))
 
        temp = sec + first
 
        # Print final answer to the query
        print(temp)
 
# Driver Code
if __name__ == "__main__":
 
    a = [ 7, 44, 19, 86, 65, 39, 75, 101 ]
    n = len(a)
     
    q = 2
    k = [ 4, 2 ]
     
    orsum(a, n, q, k)
 
# This code is contributed by chitranayal
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find Bitwise OR of two
// equal halves of an array after performing
// K right circular shifts
using System;
class GFG{
     
static int MAX = 100005;
 
// Array for storing
// the segment tree
static int []seg = new int[4 * MAX];
 
// Function to build the segment tree
static void build(int node, int l,
                  int r, int []a)
{
    if (l == r)
        seg[node] = a[l];
 
    else
    {
        int mid = (l + r) / 2;
 
        build(2 * node, l, mid, a);
        build(2 * node + 1, mid + 1, r, a);
 
        seg[node] = (seg[2 * node] |
                     seg[2 * node + 1]);
    }
}
 
// Function to return the OR
// of elements in the range [l, r]
static int query(int node, int l, int r,
                 int start, int end, int []a)
{
     
    // Check for out of bound condition
    if (l > end || r < start)
        return 0;
 
    if (start <= l && r <= end)
        return seg[node];
 
    // Find middle of the range
    int mid = (l + r) / 2;
 
    // Recurse for all the elements in array
    return ((query(2 * node, l, mid,
                      start, end, a)) |
            (query(2 * node + 1, mid + 1,
                   r, start, end, a)));
}
 
// Function to find the OR sum
static void orsum(int []a, int n,
                  int q, int []k)
{
     
    // Function to build the segment Tree
    build(1, 0, n - 1, a);
 
    // Loop to handle q queries
    for(int j = 0; j < q; j++)
    {
         
        // Effective number of
        // right circular shifts
        int i = k[j] % (n / 2);
 
        // Calculating the OR of
        // the two halves of the
        // array from the segment tree
 
        // OR of second half of the
        // array [n/2-i, n-1-i]
        int sec = query(1, 0, n - 1,
                        n / 2 - i,
                        n - i - 1, a);
 
        // OR of first half of the array
        // [n-i, n-1]OR[0, n/2-1-i]
        int first = (query(1, 0, n - 1, 0,
                         n / 2 - 1 - i, a) |
                    query(1, 0, n - 1,
                          n - i, n - 1, a));
 
        int temp = sec + first;
 
        // Print readonly answer to the query
        Console.Write(temp + "\n");
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    int []a = { 7, 44, 19, 86, 65, 39, 75, 101 };
    int n = a.Length;
    int q = 2;
 
    int []k = { 4, 2 };
 
    orsum(a, n, q, k);
}
}
 
// This code is contributed by 29AjayKumar
chevron_right

Output: 
238
230


 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




Recommended Posts:


Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : chitranayal, 29AjayKumar

Article Tags :