Given an integer N representing a non-linear equation of the form 2X + 5Y = N, the task is to find an integral pair (X, Y) that satisfies the given equation. If multiple solutions exist, then print any one of them. Otherwise, print -1.
Examples:
Input: N = 29
Output: X = 2, Y = 2
Explanation:
Since, 22 + 52 = 29
Therefore, X = 2 and Y = 2 satisfy the given equation.
Input: N = 81
Output: -1
Approach: Follow the steps below to solve the problem:
- Initialize a variable, Say xMax to store the maximum possible value of X.
- Update xMax to log2N.
- Initialize a variable, say yMax to store the maximum possible of Y.
- Update yMax to log5N
- Iterate over all possible values of X and Y and for each value of X and Y and for each pair, check if it satisfies the given equation or not. If found to be true, then print the corresponding value of X and Y.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
long long power( long long x,
long long N)
{
long long res = 1;
while (N > 0) {
if (N & 1) {
res = (res * x) ;
}
x = (x * x) ;
N = N >> 1;
}
return res;
}
void findValX_Y( long long N)
{
if (N <= 1) {
cout<<-1<<endl;
return ;
}
int xMax;
xMax = log2(N);
int yMax;
yMax = (log2(N) / log2(5.0));
for ( long long i = 1;
i <= xMax; i++) {
for ( long long j=1;
j <= yMax; j++) {
long long a
= power(2, i);
long long b
= power(5, j);
if (a + b == N) {
cout<<i<< " "
<<j<<endl;
return ;
}
}
}
cout<<-1<<endl;
}
int main()
{
long long N = 129;
findValX_Y(N);
return 0;
}
|
Java
import java.util.*;
class GFG{
static int power( int x, int N)
{
int res = 1 ;
while (N > 0 )
{
if ((N & 1 ) != 0 )
{
res = (res * x);
}
x = (x * x);
N = N >> 1 ;
}
return res;
}
static void findValX_Y( int N)
{
if (N <= 1 )
{
System.out.println(- 1 );
return ;
}
int xMax;
xMax = ( int )Math.log(N);
int yMax;
yMax = ( int )(Math.log(N) / Math.log( 5.0 ));
for ( int i = 1 ; i <= xMax; i++)
{
for ( int j = 1 ; j <= yMax; j++)
{
int a = power( 2 , i);
int b = power( 5 , j);
if (a + b == N)
{
System.out.print(i + " " + j);
return ;
}
}
}
System.out.println( "-1" );
}
public static void main(String args[])
{
int N = 129 ;
findValX_Y(N);
}
}
|
Python3
from math import log2
def power(x, N):
res = 1
while (N > 0 ):
if (N & 1 ):
res = (res * x)
x = (x * x)
N = N >> 1
return res
def findValX_Y(N):
if (N < = 1 ):
print ( - 1 )
return
xMax = 0
xMax = int (log2(N))
yMax = 0
yMax = int (log2(N) / log2( 5.0 ))
for i in range ( 1 , xMax + 1 ):
for j in range ( 1 , yMax + 1 ):
a = power( 2 , i)
b = power( 5 , j)
if (a + b = = N):
print (i, j)
return
print ( - 1 )
if __name__ = = '__main__' :
N = 129
findValX_Y(N)
|
C#
using System;
class GFG{
static int power( int x,
int N)
{
int res = 1;
while (N > 0)
{
if ((N & 1) != 0)
{
res = (res * x);
}
x = (x * x);
N = N >> 1;
}
return res;
}
static void findValX_Y( int N)
{
if (N <= 1)
{
Console.WriteLine(-1);
return ;
}
int xMax;
xMax = ( int )Math.Log(N);
int yMax;
yMax = ( int )(Math.Log(N) /
Math.Log(5.0));
for ( int i = 1; i <= xMax; i++)
{
for ( int j = 1; j <= yMax; j++)
{
int a = power(2, i);
int b = power(5, j);
if (a + b == N)
{
Console.Write(i + " " + j);
return ;
}
}
}
Console.WriteLine( "-1" );
}
public static void Main()
{
int N = 129;
findValX_Y(N);
}
}
|
Javascript
<script>
function power(x, N)
{
let res = 1;
while (N > 0)
{
if ((N & 1) != 0)
{
res = (res * x);
}
x = (x * x);
N = N >> 1;
}
return res;
}
function findValX_Y(N)
{
if (N <= 1)
{
document.write(-1);
return ;
}
let xMax;
xMax = Math.log(N);
let yMax;
yMax = Math.log(N) / Math.log(5.0);
for (let i = 1; i <= xMax; i++)
{
for (let j = 1; j <= yMax; j++)
{
let a = power(2, i);
let b = power(5, j);
if (a + b == N)
{
document.write(i + " " + j);
return ;
}
}
}
document.write( "-1" );
}
let N = 129;
findValX_Y(N);
</script>
|
Output:
2 3
Time Complexity: O(log2N * log5N)
Auxiliary Space: O(1)
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!
Last Updated :
19 Mar, 2021
Like Article
Save Article