Find an integer that is common in the maximum number of given arithmetic progressions
Given two integer arrays A[] and D[], where Ai and Di represent the first element and common difference of an arithmetic progression respectively, the task is to find an element that is common in the maximum number of given arithmetic progressions.
Examples:
Input: A[] = {3, 1, 2, 5}, D[] = {2, 3, 1, 2}
Output: 7
Explanation: The integer 7 is present in all the given APs.
Input: A[] = {13, 1, 2, 5}, D[] = {5, 10, 1, 12}
Output: 41
Approach: The problem can be easily solved using Hashing. Initialize a cnt[] array. For each element of every AP, increment the count of the element in the cnt[] array. Return the index of the cnt[] array with the maximum count.
Below is the implementation of the above approach:
CPP
// C++ implementation of the approach #include <bits/stdc++.h> using namespace std; #define MAXN 1000000 // Function to return element common // in maximum number of APs int maxCommonElement( int A[], int D[], int N) { // Initialize the count variable int cnt[MAXN] = { 0 }; for ( int i = 0; i < N; i++) { // Increment count for every // element of an AP for ( int j = A[i]; j < MAXN; j += D[i]) cnt[j]++; } // Find the index with maximum count int com = max_element(cnt, cnt + MAXN) - cnt; // Return the maximum common element return com; } // Driver code int main() { int A[] = { 13, 1, 2, 5 }, D[] = { 5, 10, 1, 12 }; int N = sizeof (A) / sizeof (A[0]); cout << maxCommonElement(A, D, N); return 0; } |
Java
// Java implementation of the approach class GFG { final static int MAXN = 1000000 ; static int max_element( int []A, int n) { int max = A[ 0 ]; for ( int i = 0 ; i < n; i++) if (A[i] > max ) max = A[i]; return max; } // Function to return element common // in maximum number of APs static int maxCommonElement( int A[], int D[], int N) { // Initialize the count variable int cnt[] = new int [MAXN] ; for ( int i = 0 ; i < N; i++) { // Increment count for every // element of an AP for ( int j = A[i]; j < MAXN; j += D[i]) cnt[j]++; } // Find the index with maximum count int ans = 0 ; int com = 0 ; for ( int i = 0 ; i < MAXN; i++) { if (cnt[i] > ans) { ans = cnt[i] ; com = i ; } } // Return the maximum common element return com; } // Driver code public static void main (String args[]) { int A[] = { 13 , 1 , 2 , 5 }, D[] = { 5 , 10 , 1 , 12 }; int N = A.length; System.out.println(maxCommonElement(A, D, N)); } } // This code is contributed by AnkitRai01 |
Python
# Python implementation of the approach MAXN = 1000000 # Function to return element common # in maximum number of APs def maxCommonElement(A, D, N): # Initialize the count variable cnt = [ 0 ] * MAXN for i in range (N): # Increment count for every # element of an AP for j in range (A[i], MAXN, D[i]): cnt[j] + = 1 # Find the index with maximum count ans = 0 com = 0 for i in range (MAXN): if cnt[i] > ans: ans = cnt[i] com = i # Return the maximum common element return com # Driver code A = [ 13 , 1 , 2 , 5 ] D = [ 5 , 10 , 1 , 12 ] N = len (A) print (maxCommonElement(A, D, N)) # This code is contributed by mohit kumar 29 |
C#
// C# implementation of the approach using System; class GFG { static int MAXN = 1000000 ; static int max_element( int []A, int n) { int max = A[0]; for ( int i = 0; i < n; i++) if (A[i] > max ) max = A[i]; return max; } // Function to return element common // in maximum number of APs static int maxCommonElement( int []A, int []D, int N) { // Initialize the count variable int []cnt = new int [MAXN] ; for ( int i = 0; i < N; i++) { // Increment count for every // element of an AP for ( int j = A[i]; j < MAXN; j += D[i]) cnt[j]++; } // Find the index with maximum count int ans = 0; int com = 0; for ( int i = 0; i < MAXN; i++) { if (cnt[i] > ans) { ans = cnt[i] ; com = i ; } } // Return the maximum common element return com; } // Driver code public static void Main () { int []A = { 13, 1, 2, 5 }; int []D = { 5, 10, 1, 12 }; int N = A.Length; Console.WriteLine(maxCommonElement(A, D, N)); } } // This code is contributed by AnkitRai01 |
Javascript
<script> // Javascript implementation of the approach var MAXN = 1000000; // Function to return element common // in maximum number of APs function maxCommonElement(A, D, N) { // Initialize the count variable var cnt = Array(MAXN).fill(0); for ( var i = 0; i < N; i++) { // Increment count for every // element of an AP for ( var j = A[i]; j < MAXN; j += D[i]) cnt[j]++; } // Find the index with maximum count var ans = 0; var com = 0; for ( var i = 0; i < MAXN; i++) { if (cnt[i] > ans) { ans = cnt[i] ; com = i ; } } // Return the maximum common element return com; } // Driver code var A = [ 13, 1, 2, 5 ], D = [ 5, 10, 1, 12 ]; var N = A.length; document.write( maxCommonElement(A, D, N)); // This code is contributed by rutvik_56. </script> |
41
Time Complexity: O(N * 106)
Auxiliary Space: O(106)
Please Login to comment...