Skip to content
Related Articles

Related Articles

Improve Article
Find all unique pairs of maximum and second maximum elements over all sub-arrays in O(NlogN)
  • Difficulty Level : Medium
  • Last Updated : 10 Jun, 2021

Let (a, b)        represent the ordered pair of the second maximum and the maximum element of an array respectively. We need to find all such unique pairs overall contiguous sub-arrays of a given array.

Examples:  

Input: Arr = [ 1, 2, 3, 4, 5 ] 
Output: (1, 2) (2, 3) (3, 4) (4, 5)

Input: Arr = [ 1, 1, 2 ] 
Output: (1, 1) (1, 2)

Input: Arr = [ 1, 2, 6, 4, 5 ] 
Output: (1, 2) (2, 6) (4, 5) (4, 6) (5, 6) 
 



Brute Force Approach

  • A simple way to solve this problem would be to scan each sub-array and find the maximum and second maximum element in that sub-array
  • This can be done in O(N^2)        time
  • Then we can insert each pair in a set to ensure duplicates are removed, and then print them
  • Each insertion operation costs O(log(N))        , pushing the final complexity to O(N^2log(N))

C++14




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the set of pairs
set<pair<int, int> > pairs(vector<int>& arr)
{
    set<pair<int, int> > pairs;
 
    // find all subarrays
    for (int i = 0; i < arr.size() - 1; ++i) {
        int maximum = max(arr[i], arr[i + 1]),
            secondmax = min(arr[i], arr[i + 1]);
 
        for (int j = i + 1; j < arr.size(); ++j) {
            // update max and second max
            if (arr[j] > maximum) {
                secondmax = maximum;
                maximum = arr[j];
            }
            if (arr[j] < maximum && arr[j] > secondmax) {
                secondmax = arr[j];
            }
 
            // insert a pair in set
            pairs.insert(make_pair(secondmax, maximum));
        }
    }
    return pairs;
}
 
int main()
{
    vector<int> vec = { 1, 2, 6, 4, 5 };
 
    set<pair<int, int> > st = pairs(vec);
    cout << "Total Number of valid pairs is :"
         << (int)st.size() << "\n";
    for (auto& x : st) {
        cout << "(" << x.first << ", " << x.second << ") ";
    }
    return 0;
}

Java




// Java implementation
import java.util.HashSet;
import java.util.Set;
 
class Pair implements Comparable<Pair> {
    int first, second;
 
    public Pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
 
    @Override public int hashCode()
    {
        return 31 * first + second;
    }
 
    public boolean equals(Object p)
    {
        Pair pair = (Pair)p;
 
        if (this.first != pair.first)
            return false;
 
        return this.second == pair.second;
    }
 
    @Override public int compareTo(Pair p)
    {
        if (this.first == p.first) {
            return this.second - p.second;
        }
        return this.first - p.first;
    }
}
 
class GFG {
 
    // Function to return the set of pairs
    static Set<Pair> pairs(int[] arr)
    {
        Set<Pair> pairs = new HashSet<>();
 
        // Find all subarrays
        for (int i = 0; i < arr.length - 1; ++i) {
            int maximum = Math.max(arr[i], arr[i + 1]),
                secondmax = Math.min(arr[i], arr[i + 1]);
 
            for (int j = i + 1; j < arr.length; ++j) {
 
                // Update max and second max
                if (arr[j] > maximum) {
                    secondmax = maximum;
                    maximum = arr[j];
                }
                if (arr[j] < maximum
                    && arr[j] > secondmax) {
                    secondmax = arr[j];
                }
 
                // Insert a pair in set
                pairs.add(new Pair(secondmax, maximum));
            }
        }
        return pairs;
    }
 
    // Driver Code
    public static void main(String[] args)
    {
        int[] vec = { 1, 2, 6, 4, 5 };
 
        Set<Pair> st = pairs(vec);
        System.out.println("Total Number of "
                           + "valid pairs is :"
                           + st.size());
 
        for (Pair x : st) {
            System.out.printf("(%d, %d)\n", x.first,
                              x.second);
        }
    }
}
 
// This code is contributed by sanjeev2552

Python3




# python3 implementation
 
# Function to return the set of pairs
def SetofPairs(arr):
 
    pairs = set()
    n = len(arr)     # length of array
     
    # find all subarrays
    for i in range(n - 1):
        maximum = max(arr[i], arr[i + 1])
        secondmax = min(arr[i], arr[i + 1])
        for j in range(i + 1, n):
 
            # update max and second max
            if (arr[j] > maximum):
                secondmax = maximum
                maximum = arr[j]
            if (arr[j] < maximum and arr[j] > secondmax):
                secondmax = arr[j]
 
            # add a pair in set
            pairs.add((secondmax, maximum))
    return pairs
 
# Driver code
if __name__ == "__main__":
 
    vec = [1, 2, 6, 4, 5]
    st = SetofPairs(vec)
    print("Total Number of valid pairs is :", len(st))
 
    for x in st:
        print(x, end = " ")
 
        # This code is contributed by sunilsoni10220001022000.

Javascript




<script>
 
// JavaScript implementation
 
// Function to return the set of pairs
function pairs(arr)
{
    var pairs = new Set();
 
    // find all subarrays
    for (var i = 0; i < arr.length - 1; ++i) {
        var maximum = Math.max(arr[i], arr[i + 1]),
            secondmax = Math.min(arr[i], arr[i + 1]);
 
        for (var j = i + 1; j < arr.length; ++j) {
            // update max and second max
            if (arr[j] > maximum) {
                secondmax = maximum;
                maximum = arr[j];
            }
            if (arr[j] < maximum && arr[j] > secondmax) {
                secondmax = arr[j];
            }
 
            // insert a pair in set
            pairs.add([secondmax, maximum].toString());
        }
    }
    return pairs;
}
 
var vec = [1, 2, 6, 4, 5 ];
var st = pairs(vec);
document.write( "Total Number of valid pairs is :" +
st.size + "<br>");
[...st].sort().forEach(x => {
    x = x.split(',');
    document.write( "(" + x[0] + ", " + x[1] + ") ")
})
 
</script>

Output: 

Total Number of valid pairs is :5
(1, 2) (2, 6) (4, 5) (4, 6) (5, 6)

Complexity Analysis: 

  • Time Complexity: O(N^2 log(N)). 
    Insertion in set takes log N time. There can be at most N^2 sub-arrays. So the time Complexity is O(N^2 log N).
  • Auxiliary Space: O(n^2). 
    As extra space is required to store the elements in a set.

Efficient Approach

  • It could bring down the complexity of finding pairs to O(N)        by observing that an element X        can form pairs with elements only till the closest element to the right which is greater than X        .
  • To see why this holds, consider X        4        in the next example.
 Arr = {1, 4, 5, 3, 2, 1}
  • It could see that 5 > 4        is the nearest element to the right which is greater than 4        (4, 5)        forms a pair considering the sub-array [4, 5]        .
  • Other sub-arrays, that start with 4        must include 5        . Considering one of them, if another element Y >=5        exists in the sub-array, then (5, Y)        will be the pair for that sub-array.
  • Else either (4, 5)        will be formed or (Z, 5)        will be formed, where Z        is the max element to the right of 5        in the sub-array.
  • In any cases, 4        cannot form a pair with any element to the right of 5        .
  • Using this observation, we can implement the logic using stack which brings down the pair generation complexity to O(N)        .
  • Each pair can be inserted into a set for eliminating duplicates, giving a final time complexity of O(Nlog(N))

Below is the implementation of the above approach: 

C++




// C++ implementation
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the set of pairs
set<pair<int, int>>
     pairs(vector<int>& arr)
{
    stack<int> st;
    set<pair<int, int>> pairs;
 
    // Push first element into stack
    st.push(arr[0]);
 
    // For each element 'X' in arr,
    // pop the stack while top Element
    // is smaller than 'X' and form a pair.
    // If the stack is not empty after
    // the previous operation, create
    // a pair. Push X into the stack.
 
    for (int i = 1; i < arr.size(); ++i) {
        while (!st.empty() &&
                arr[i] > st.top()) {
            pairs.insert(make_pair(st.top(),
                                    arr[i]));
            st.pop();
        }
        if (!st.empty()) {
            pairs.insert(make_pair(min(st.top(),
                                       arr[i]),
                                   max(st.top(),
                                      arr[i])));
        }
        st.push(arr[i]);
    }
    return pairs;
}
 
int main()
{
    vector<int> vec = { 1, 2, 6, 4, 5 };
 
    set<pair<int, int> > st = pairs(vec);
    cout << "Total Number of valid pairs is :"
                   << (int)st.size() << "\n";
    for (auto& x : st) {
        cout << "(" << x.first << ", "
                       << x.second << ") ";
    }
    return 0;
}

Python3




# Python3 implementationof the above approach
 
# Function to return the set of pairs
def pairs(arr) :
 
    st = [];
    pairs = [];
 
    # Push first element into stack
    st.append(arr[0]);
 
    # For each element 'X' in arr,
    # pop the stack while top Element
    # is smaller than 'X' and form a pair.
    # If the stack is not empty after
    # the previous operation, create
    # a pair. Push X into the stack.
    for i in range(1, len(arr) ) :
        while len(st) != 0 and arr[i] > st[-1] :
            pairs.append((st[-1], arr[i]));
            st.pop();
     
        if len(st) != 0 :
            pairs.append((min(st[-1], arr[i]),
                        max(st[-1], arr[i])));
         
        st.append(arr[i]);
     
    return pairs;
 
# Driver code
if __name__ == "__main__" :
 
    vec = [ 1, 2, 6, 4, 5 ];
    st = pairs(vec);
    print("Total Number of valid pairs is :",len(st));
     
    for x in st :
        print("(" ,x[0], ", ",x[1], ")",end=" ");
 
# This code is contributed by AnkitRai01
Output: 
Total Number of valid pairs is :5
(1, 2) (2, 6) (4, 5) (4, 6) (5, 6)

 

Complexity Analysis: 

  • Time Complexity: O(N log(N)). 
    Each pair can be inserted into a set for eliminating duplicates, giving a final time complexity of O(N log N)
  • Auxiliary Space: O(N). 
    As extra space is required to store the elements in a set.

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer DSA Live Classes 




My Personal Notes arrow_drop_up
Recommended Articles
Page :