# Find all the possible mappings of characters in a sorted order

Given a number find all the possible mappings of the characters in sorted order.

Examples:

```Input: 123
Output: ABC
AW
LC
Explanation:
1 = A; 2 = B; 3 = C; 12 = L; 23 = W

{1, 2, 3}
/        \
/          \
"A"{2, 3}           "L"{3}
/      \          /   \
/        \        /     \
"AB"{3}  "A"{23}  "LC"    null
/  \        /  \
/    \      /    \
"ABC" null  "AW"  null

Input : 2122
Output : BABB
BAV
BLB
UBB
UV
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach :

1. A recursive function which takes an input character array which contains the number stored in a form of characters, an output character array, and two variables(say i and j) that can be used to iterate over both the arrays is created.
2. Using recursion, character for the ith digit in the input array is obtained and the corresponding mapped character with that digit is stored at the jth index in the output array.
3. There will be two recursive calls. The first call will process a single-digit every time, whereas the second call will process two digits at a time.
4. While processing two digits at a time, the number should be always less than 26 because after combining, the corresponding character has to lie between A to Z.
5. At last, in the base case when the whole input string has been processed, the output array is printed.

Below is the implementation of the above approach.

## CPP

 `// C++ program to find all the possible ` `// string mappings of a given number ` `// in a sorted order ` `#include ` `using` `namespace` `std; ` ` `  `// Function to find the string mappings ` `void` `mapped(``char` `inputarr[], ``char` `outputarr[], ` `            ``int` `i, ``int` `j) ` `{ ` ` `  `    ``// Base case ` `    ``if` `(inputarr[i] == ``'\0'``) { ` `        ``outputarr[j] = ``'\0'``; ` `        ``cout << outputarr << endl; ` `        ``return``; ` `    ``} ` ` `  `    ``// Convert the character to integer ` `    ``int` `digit = inputarr[i] - ``'0'``; ` ` `  `    ``// To store the characters corresponding ` `    ``// to the digits which are further ` `    ``// stored in outputarr[] ` `    ``char` `ch = digit + ``'A'` `- 1; ` `    ``outputarr[j] = ch; ` ` `  `    ``// First recursive call taking one digit at a time ` `    ``mapped(inputarr, outputarr, i + 1, j + 1); ` ` `  `    ``if` `(inputarr[i + 1] != ``'\0'``) { ` `        ``int` `second_digit = inputarr[i + 1] - ``'0'``; ` `        ``int` `number = digit * 10 + second_digit; ` ` `  `        ``if` `(number <= 26) { ` `            ``ch = number + ``'A'` `- 1; ` `            ``outputarr[j] = ch; ` ` `  `            ``// Second recursive call processing ` `            ``// two digits at a time ` `            ``mapped(inputarr, outputarr, i + 2, j + 1); ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``char` `inputarr[] = { ``'1'``, ``'2'``, ``'3'` `}; ` `    ``int` `m = ``pow``(2, 3) - 1; ` `    ``int` `n = ``sizeof``(m) / ``sizeof``(``int``); ` `    ``char` `outputarr[n]; ` ` `  `    ``mapped(inputarr, outputarr, 0, 0); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to find all the possible  ` `// string mappings of a given number  ` `// in a sorted order  ` `     `  `class` `GFG ` `{ ` `     `  `    ``// Function to find the string mappings  ` `    ``static` `void` `mapped(``char` `inputarr[], ``char` `outputarr[],  ` `                        ``int` `i, ``int` `j)  ` `    ``{  ` `     `  `        ``// Base case  ` `        ``if` `(i >= inputarr.length) ` `        ``{  ` `            ``String str = ``new` `String(outputarr); ` `            ``System.out.println(str.substring(``0``, j));  ` `            ``return``;  ` `        ``}  ` `     `  `        ``// Convert the character to integer  ` `        ``int` `digit = inputarr[i] - ``'0'``;  ` `     `  `        ``// To store the characters corresponding  ` `        ``// to the digits which are further  ` `        ``// stored in outputarr[]  ` `        ``char` `ch = (``char``)(digit + (``int``)(``'A'``) - ``1``);  ` `        ``outputarr[j] = ch;  ` `     `  `        ``// First recursive call taking one digit at a time  ` `        ``mapped(inputarr, outputarr, i + ``1``, j + ``1``);  ` `     `  `        ``if` `(i + ``1` `< inputarr.length)  ` `        ``{  ` `            ``int` `second_digit = inputarr[i + ``1``] - ``'0'``;  ` `            ``int` `number = digit * ``10` `+ second_digit;  ` `     `  `            ``if` `(number <= ``26``)  ` `            ``{  ` `                ``ch = (``char``)(number + (``int``)``'A'` `- ``1``);  ` `                ``outputarr[j] = ch;  ` `     `  `                ``// Second recursive call processing  ` `                ``// two digits at a time  ` `                ``mapped(inputarr, outputarr, i + ``2``, j + ``1``);  ` `            ``}  ` `        ``}  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `main (String[] args)  ` `    ``{  ` `        ``char` `inputarr[] = { ``'1'``, ``'2'``, ``'3'` `};  ` `        ``int` `m = (``int``)Math.pow(``2``, ``3``) - ``1``;  ` `        ``int` `n = ``1``;  ` `        ``char` `outputarr[] = ``new` `char``[m];  ` `     `  `        ``mapped(inputarr, outputarr, ``0``, ``0``);  ` `    ``}  ` `} ` ` `  `// This code is contributed by AnkitRai01 `

## Python3

 `# Python3 program to find all the possible ` `# string mappings of a given number ` `# in a sorted order ` ` `  `# Function to find the string mappings ` `def` `mapped(inputarr, outputarr, i, j): ` ` `  `    ``# Base case ` `    ``if` `(i ``=``=` `len``(inputarr)): ` `        ``print``("".join(outputarr[:j])) ` `        ``return` ` `  `    ``# Convert the character to integer ` `    ``digit ``=` `ord``(inputarr[i]) ``-` `ord``(``'0'``) ` ` `  `    ``# To store the characters corresponding ` `    ``# to the digits which are further ` `    ``# stored in outputarr[] ` `    ``ch ``=` `digit ``+` `ord``(``'A'``) ``-` `1` `    ``outputarr[j] ``=` `chr``(ch) ` ` `  `    ``# First recursive call taking one digit at a time ` `    ``mapped(inputarr, outputarr, i ``+` `1``, j ``+` `1``) ` ` `  `    ``if` `(i ``+` `1` `< ``len``(inputarr) ``and` `[i ``+` `1``] !``=` `'\0'``): ` `        ``second_digit ``=` `ord``(inputarr[i ``+` `1``]) ``-` `ord``(``'0'``) ` `        ``number ``=` `digit ``*` `10` `+` `second_digit ` ` `  `        ``if` `(number <``=` `26``): ` `            ``ch ``=` `number ``+` `ord``(``'A'``) ``-` `1` `            ``outputarr[j] ``=` `chr``(ch) ` ` `  `            ``# Second recursive call processing ` `            ``# two digits at a time ` `            ``mapped(inputarr, outputarr, i ``+` `2``, j ``+` `1``) ` ` `  `# Driver code ` `inputarr ``=` `[``'1'``, ``'2'``, ``'3'``] ` `m ``=` `pow``(``2``, ``3``) ``-` `1` `n ``=` `1` `outputarr ``=` `[``'0'``] ``*` `m ` ` `  `mapped(inputarr, outputarr, ``0``, ``0``) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# program to find all the possible  ` `// string mappings of a given number  ` `// in a sorted order  ` `using` `System; ` ` `  `class` `GFG  ` `{  ` `     `  `    ``// Function to find the string mappings  ` `    ``static` `void` `mapped(``char` `[]inputarr, ``char` `[]outputarr,  ` `                        ``int` `i, ``int` `j)  ` `    ``{  ` `     `  `        ``// Base case  ` `        ``if` `(i >= inputarr.Length)  ` `        ``{  ` `            ``string` `str = ``new` `string``(outputarr);  ` `            ``Console.WriteLine(str.Substring(0, j));  ` `            ``return``;  ` `        ``}  ` `     `  `        ``// Convert the character to integer  ` `        ``int` `digit = inputarr[i] - ``'0'``;  ` `     `  `        ``// To store the characters corresponding  ` `        ``// to the digits which are further  ` `        ``// stored in outputarr[]  ` `        ``char` `ch = (``char``)(digit + (``int``)(``'A'``) - 1);  ` `        ``outputarr[j] = ch;  ` `     `  `        ``// First recursive call taking one digit at a time  ` `        ``mapped(inputarr, outputarr, i + 1, j + 1);  ` `     `  `        ``if` `(i + 1 < inputarr.Length)  ` `        ``{  ` `            ``int` `second_digit = inputarr[i + 1] - ``'0'``;  ` `            ``int` `number = digit * 10 + second_digit;  ` `     `  `            ``if` `(number <= 26)  ` `            ``{  ` `                ``ch = (``char``)(number + (``int``)``'A'` `- 1);  ` `                ``outputarr[j] = ch;  ` `     `  `                ``// Second recursive call processing  ` `                ``// two digits at a time  ` `                ``mapped(inputarr, outputarr, i + 2, j + 1);  ` `            ``}  ` `        ``}  ` `    ``}  ` `     `  `    ``// Driver code  ` `    ``public` `static` `void` `Main ()  ` `    ``{  ` `        ``char` `[]inputarr = { ``'1'``, ``'2'``, ``'3'` `};  ` `        ``int` `m = (``int``)Math.Pow(2, 3) - 1;  ` `        ``int` `n = 1;  ` `        ``char` `[]outputarr = ``new` `char``[m];  ` `     `  `        ``mapped(inputarr, outputarr, 0, 0);  ` `    ``}  ` `}  ` ` `  `// This code is contributed by AnkitRai01  `

Output:

```ABC
AW
LC
```

GeeksforGeeks has prepared a complete interview preparation course with premium videos, theory, practice problems, TA support and many more features. Please refer Placement 100 for details

My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : mohit kumar 29, AnkitRai01