# Find all Ramanujan Numbers that can be formed by numbers upto L

• Difficulty Level : Medium
• Last Updated : 11 Jun, 2021

Given a positive integer L, the task is to find all the Ramanujan Numbers that can be generated by any set of quadruples (a, b, c, d), where 0 < a, b, c, d ≤ L.

Ramanujan Numbers are the numbers that can be expressed as sum of two cubes in two different ways.
Therefore, Ramanujan Number (N) = a3 + b3 = c3 + d3

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

Examples:

Input: L = 20
Output: 1729, 4104
Explanation:
The number 1729 can be expressed as 123 + 13 and 103 + 93.
The number 4104 can be expressed as 163 + 23 and 153 + 93.

Input: L = 30
Output: 1729, 4104, 13832, 20683

Naive Approach: The simplest approach is to check for all combination of quadruples (a, b, c, d) from the range [1, L] consisting of distinct elements that satisfy the equation a3 + b3 = c3 + d3. For elements found to be satisfying the conditions, store the Ramanujan Numbers as 3 + b3. Finally, after checking for all possible combinations, print all the stored numbers.

Below is the implementation of the above approach:

## C++

 `// CPP program for the above approach``#include``using` `namespace` `std;` `// Function to find Ramanujan numbers``// made up of cubes of numbers up to L``map<``int``,vector<``int``>> ramanujan_On4(``int` `limit)``{``    ``map<``int``,vector<``int``>> dictionary;` `    ``// Generate all quadruples a, b, c, d``    ``// of integers from the range [1, L]``    ``for``(``int` `a = 0; a < limit; a++)``    ``{``        ``for``(``int` `b = 0; b < limit; b++)``        ``{``            ``for``(``int` `c = 0; c < limit; c++)``            ``{``               ``for``(``int` `d = 0; d < limit; d++)``               ``{` `                    ``// Condition // 2:``                    ``// a, b, c, d are not equal``                    ``if` `((a != b) and (a != c) and (a != d)``                        ``and (b != c) and (b != d)``                            ``and (c != d)){` `                        ``int` `x = ``pow``(a, 3) + ``pow``(b, 3);``                        ``int` `y = ``pow``(c, 3) + ``pow``(d, 3);``                        ``if` `((x) == (y))``                        ``{``                            ``int` `number = ``pow``(a, 3) + ``pow``(b, 3);``                            ``dictionary[number] = {a, b, c, d};``                        ``}``                    ``}``            ``}``        ``}``    ``}``}` `    ``// Return all the possible number``    ``return` `dictionary;``}` `// Driver Code``int` `main()``{``   ` `// Given range L``int` `L = 30;``map<``int``, vector<``int``>> ra1_dict = ramanujan_On4(L);` `// Print all the generated numbers``for``(``auto` `x:ra1_dict)``{``    ``cout << x.first << ``": ("``;``  ` `   ``// sort(x.second.begin(),x.second.end());``    ``for``(``int` `i = x.second.size() - 1; i >= 0; i--)``    ``{``        ``if``(i == 0)``          ``cout << x.second[i] << ``")"``;``        ``else``         ``cout << x.second[i] << ``", "``;   ``    ``}``    ``cout << endl;``}``}` `// This code is contributed by SURENDRA_GANGWAR.`

## Java

 `// Java program for the above approach``import` `java.util.*;``import` `java.lang.*;` `class` `GFG{``    ` `static` `Map> ra1_dict; ` `// Function to find Ramanujan numbers``// made up of cubes of numbers up to L``static` `void` `ramanujan_On4(``int` `limit)``{``    ` `    ``// Generate all quadruples a, b, c, d``    ``// of integers from the range [1, L]``    ``for``(``int` `a = ``0``; a < limit; a++)``    ``{``        ``for``(``int` `b = ``0``; b < limit; b++)``        ``{``            ``for``(``int` `c = ``0``; c < limit; c++)``            ``{``               ``for``(``int` `d = ``0``; d < limit; d++)``               ``{` `                    ``// Condition // 2:``                    ``// a, b, c, d are not equal``                    ``if` `((a != b) && (a != c) && (a != d) &&``                        ``(b != c) && (b != d) && (c != d))``                    ``{``                        ``int` `x = (``int``)Math.pow(a, ``3``) +``                                ``(``int``) Math.pow(b, ``3``);``                        ``int` `y = (``int``)Math.pow(c, ``3``) +``                                ``(``int``) Math.pow(d, ``3``);``                        ``if` `((x) == (y))``                        ``{``                            ``int` `number = (``int``)Math.pow(a, ``3``) +``                                         ``(``int``) Math.pow(b, ``3``);``                            ``ra1_dict.put(number, ``new` `ArrayList<>(``                                ``Arrays.asList(a, b, c, d)));``                        ``}``                    ``}``                ``}``            ``}``        ``}``    ``}``}` `// Driver code``public` `static` `void` `main(String[] args)``{``    ` `    ``// Given range L``    ``int` `L = ``30``;``    ` `    ``ra1_dict = ``new` `HashMap<>();``    ` `    ``ramanujan_On4(L);``    ` `    ``// Print all the generated numbers``    ``for``(Map.Entry> x: ra1_dict.entrySet())``    ``{``        ``System.out.print(x.getKey() + ``": ("``);``        ` `        ``// sort(x.second.begin(),x.second.end());``        ``for``(``int` `i = x.getValue().size() - ``1``; i >= ``0``; i--)``        ``{``            ``if` `(i == ``0``)``                ``System.out.print(x.getValue().get(i) + ``")"``);``            ``else``                ``System.out.print(x.getValue().get(i) + ``", "``);   ``        ``}``        ``System.out.println();``    ``}``}``}` `// This code is contributed by offbeat`

## Python3

 `# Python program for the above approach``import` `time` `# Function to find Ramanujan numbers``# made up of cubes of numbers up to L``def` `ramanujan_On4(limit):``    ``dictionary ``=` `dict``()` `    ``# Generate all quadruples a, b, c, d``    ``# of integers from the range [1, L]``    ``for` `a ``in` `range``(``0``, limit):``        ``for` `b ``in` `range``(``0``, limit):``            ``for` `c ``in` `range``(``0``, limit):``                ``for` `d ``in` `range``(``0``, limit):` `                    ``# Condition # 2:``                    ``# a, b, c, d are not equal``                    ``if` `((a !``=` `b) ``and` `(a !``=` `c) ``and` `(a !``=` `d)``                        ``and` `(b !``=` `c) ``and` `(b !``=` `d)``                            ``and` `(c !``=` `d)):` `                        ``x ``=` `a ``*``*` `3` `+` `b ``*``*` `3``                        ``y ``=` `c ``*``*` `3` `+` `d ``*``*` `3``                        ``if` `(x) ``=``=` `(y):``                            ``number ``=` `a ``*``*` `3` `+` `b ``*``*` `3``                            ``dictionary[number] ``=` `a, b, c, d` `    ``# Return all the possible number``    ``return` `dictionary`  `# Driver Code` `# Given range L``L ``=` `30``ra1_dict ``=` `ramanujan_On4(L)` `# Print all the generated numbers``for` `i ``in` `sorted``(ra1_dict):``    ``print``(f``'{i}: {ra1_dict[i]}'``, end ``=``'\n'``)`

## Javascript

 ``
Output:
```1729: (9, 10, 1, 12)
4104: (9, 15, 2, 16)
13832: (18, 20, 2, 24)
20683: (19, 24, 10, 27)```

Time Complexity: O(L4)
Auxiliary Space: O(1)

Efficient Approach: The above approach can also be optimized by using Hashing. Follow the steps below to solve the problem:

• Initialize an array, say ans[], to stores all the possible Ramanujan Numbers that satisfy the given conditions.
• Precompute and store the cubes of all numbers from the range [1, L] in an auxiliary array arr[].
• Initialize a HashMap, say M, that stores the sum of all possible combinations of a pair of cubes generated from the array arr[].
• Now, generate all possible pairs(i, j) of the array arr[] and if the sum of pairs doesn’t exist in the array, then mark the occurrence of the current sum of pairs in the Map. Otherwise, add the current sum to the array ans[] as it is one of the Ramanujan Numbers.
• After completing the above steps, print the numbers stored in the array ans[].

Below is the implementation of the above approach:

## Python3

 `# Python program for the above approach``from` `array ``import` `*``import` `time` `# Function to find Ramanujan numbers``# made up of cubes of numbers up to L``def` `ramanujan_On2(limit):``    ``cubes ``=` `array(``'i'``, [])` `    ``# Stores the sum of pairs of cubes``    ``dict_sum_pairs ``=` `dict``()` `    ``# Stores the Ramanujan Numbers``    ``dict_ramnujan_nums ``=` `dict``()``    ``sum_pairs ``=` `0` `    ``# Stores the cubes from 1 to L``    ``for` `i ``in` `range``(``0``, limit):``        ``cubes.append(i ``*``*` `3``)``     ` `    ``# Generate all pairs (a, b)``    ``# from the range [0, L]``    ``for` `a ``in` `range``(``0``, limit):``        ``for` `b ``in` `range``(a ``+` `1``, limit):``            ``a3, b3 ``=` `cubes[a], cubes[b]` `            ``# Find the sum of pairs``            ``sum_pairs ``=` `a3 ``+` `b3` `            ``# Append to dictionary``            ``if` `sum_pairs ``in` `dict_sum_pairs:` `                ``# If the current sum is in``                ``# the dictionary, then store``                ``# the current number``                ``c, d ``=` `dict_sum_pairs.get(sum_pairs)``                ``dict_ramnujan_nums[sum_pairs] ``=` `a, b, c, d` `            ``# Otherwise append the current``            ``# sum pairs to the sum pairs``            ``# dictionary``            ``else``:``                ``dict_sum_pairs[sum_pairs] ``=` `a, b` `        ``# Return the possible Ramanujan``    ``# Numbers``    ``return` `dict_ramnujan_nums`  `# Driver Code` `# Given range L``L ``=` `30``r_dict ``=` `ramanujan_On2(L)` `# Print all the numbers``for` `d ``in` `sorted``(r_dict):``    ``print``(f``'{d}: {r_dict[d]}'``, end ``=``'\n'``)`
Output:
```1729: (9, 10, 1, 12)
4104: (9, 15, 2, 16)
13832: (18, 20, 2, 24)
20683: (19, 24, 10, 27)```

Time Complexity: O(L2)
Auxiliary Space: O(L2)

My Personal Notes arrow_drop_up