# Find all Pairs possible from the given Array

Given an array arr[] of N integers, the task is to find all the pairs possible from the given array.
Note:

1. (arr[i], arr[i]) is also considered as a valid pair.
2. (arr[i], arr[j]) and (arr[j], arr[i]) are considered as two different pairs.

Examples:

Input: arr[] = {1, 2}
Output: (1, 1), (1, 2), (2, 1), (2, 2).

Input: arr[] = {1, 2, 3}
Output: (1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach:
In order to find all the possible pairs from the array, we need to traverse the array and select the first element of the pair. Then we need to pair this element with all the elements in the array from index 0 to N-1.

Below is the step by step approach:

• Traverse the array and select an element in each traversal.
• For each element selected, traverse the array with help of another loop and form the pair of this element with each element in the array from the second loop.
• The array in the second loop will get executed from its first element to its last element, i.e. from index 0 to N-1.
• Print each pair formed.

Below is the implementation of the above approach:

## C++

 `// C++ implementation to find all ` `// Pairs possible from the given Array ` ` `  `#include ` `using` `namespace` `std; ` ` `  `// Function to print all possible ` `// pairs from the array ` `void` `printPairs(``int` `arr[], ``int` `n) ` `{ ` ` `  `    ``// Nested loop for all possible pairs ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = 0; j < n; j++) { ` `            ``cout << ``"("` `<< arr[i] << ``", "` `                 ``<< arr[j] << ``")"` `                 ``<< ``", "``; ` `        ``} ` `    ``} ` `} ` ` `  `// Driver code ` `int` `main() ` `{ ` `    ``int` `arr[] = { 1, 2 }; ` `    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr); ` ` `  `    ``printPairs(arr, n); ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java implementation to find all ` `// Pairs possible from the given Array ` `class` `GFG{ ` `  `  `// Function to print all possible ` `// pairs from the array ` `static` `void` `printPairs(``int` `arr[], ``int` `n) ` `{ ` `  `  `    ``// Nested loop for all possible pairs ` `    ``for` `(``int` `i = ``0``; i < n; i++) { ` `        ``for` `(``int` `j = ``0``; j < n; j++) { ` `            ``System.out.print(``"("` `+  arr[i]+ ``", "` `                 ``+ arr[j]+ ``")"` `                ``+ ``", "``); ` `        ``} ` `    ``} ` `} ` `  `  `// Driver code ` `public` `static` `void` `main(String[] args) ` `{ ` `    ``int` `arr[] = { ``1``, ``2` `}; ` `    ``int` `n = arr.length; ` `  `  `    ``printPairs(arr, n); ` `  `  `} ` `} ` ` `  `// This code is contributed by PrinciRaj1992 `

## Python3

 `# Python3 implementation to find all ` `# Pairs possible from the given Array ` ` `  `# Function to prall possible ` `# pairs from the array ` `def` `printPairs(arr, n): ` ` `  `    ``# Nested loop for all possible pairs ` `    ``for` `i ``in` `range``(n): ` `        ``for` `j ``in` `range``(n): ` `            ``print``(``"("``,arr[i],``","``,arr[j],``")"``,end``=``", "``) ` ` `  `# Driver code ` ` `  `arr``=``[``1``, ``2``] ` `n ``=` `len``(arr) ` ` `  `printPairs(arr, n) ` ` `  `# This code is contributed by mohit kumar 29 `

## C#

 `// C# implementation to find all ` `// Pairs possible from the given Array ` `using` `System; ` ` `  `class` `GFG{ ` `  `  `// Function to print all possible ` `// pairs from the array ` `static` `void` `printPairs(``int` `[]arr, ``int` `n) ` `{ ` `  `  `    ``// Nested loop for all possible pairs ` `    ``for` `(``int` `i = 0; i < n; i++) { ` `        ``for` `(``int` `j = 0; j < n; j++) { ` `            ``Console.Write(``"("` `+  arr[i]+ ``", "` `                 ``+ arr[j]+ ``")"` `                ``+ ``", "``); ` `        ``} ` `    ``} ` `} ` `  `  `// Driver code ` `public` `static` `void` `Main(``string``[] args) ` `{ ` `    ``int` `[]arr = { 1, 2 }; ` `    ``int` `n = arr.Length; ` `  `  `    ``printPairs(arr, n); ` `} ` `} ` ` `  `// This code is contributed by AnkitRai01 `

Output:

```(1, 1), (1, 2), (2, 1), (2, 2),
```

Time Complexity: O(N2)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :

2

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.