Find all divisors of first N natural numbers

Given an integer N, the task is to find all the divisors of numbers from 1 to N.
Note: 1 ? N ? 100000 
Examples:

Input: N = 2 
Output: 
1 –>1 
2 –>1, 2

Input: N = 5 
Output: 
1 –>1 
2 –>1, 2 
3 –>1, 3 
4 –>1, 2, 4 
5 –>1, 5

Naive Approach:

Below is the implementation of the above approach:



filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find all 
// the divisors of the first N
// natural numbers
  
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to find the divisors
// of the first N natural numbers
void factors(int n)
{
    int i, j;
    cout << "1 -->1\n";
      
    // Loop to find the divisors
    for (i = 2; i <= n; i++) {
        cout << i << " -->";
        for (j = 1; j <= i / 2; j++) {
            if (i % j == 0)
                cout << j << ", ";
        }
        cout << i << "\n";
    }
}
  
// Driver Code
int main()
{
    int n = 5;
    factors(n);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find all 
// the divisors of the first N
// natural numbers
class GFG{
  
// Function to find the divisors
// of the first N natural numbers
static void factors(int n)
{
    int i, j;
    System.out.print("1 -->1\n");
      
    // Loop to find the divisors
    for(i = 2; i <= n; i++)
    {
       System.out.print(i + " -->");
       for(j = 1; j <= i / 2; j++)
       {
          if (i % j == 0)
              System.out.print(j + ", ");
       }
       System.out.print(i + "\n");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 5;
    factors(n);
}
}
  
// This code is contributed by Rohit_ranjan
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find all 
# the divisors of the first N
# natural numbers
  
# Function to find the divisors
# of the first N natural numbers
def factors(n):
  
    i = 0; j = 0;
    print("1 -->1");
      
    # Loop to find the divisors
    for i in range(2, n + 1):
        print(i, "-->", end = "");
        for j in range(1, (i // 2) + 1):
            if (i % j == 0):
                print(j, ",", end = "");
          
        print(i, end = "\n");
      
# Driver Code
n = 5;
factors(n);
  
# This code is contributed by Code_Mech
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find all 
// the divisors of the first N
// natural numbers
using System;
class GFG{
  
// Function to find the divisors
// of the first N natural numbers
static void factors(int n)
{
    int i, j;
    Console.Write("1 -->1\n");
      
    // Loop to find the divisors
    for(i = 2; i <= n; i++)
    {
        Console.Write(i + " -->");
        for(j = 1; j <= i / 2; j++)
        {
            if (i % j == 0)
                Console.Write(j + ", ");
        }
        Console.Write(i + "\n");
    }
}
  
// Driver Code
public static void Main()
{
    int n = 5;
    factors(n);
}
}
  
// This code is contributed by Nidhi_biet
chevron_right

Output: 
1 -->1
2 -->1, 2
3 -->1, 3
4 -->1, 2, 4
5 -->1, 5

Time Complexity: O(N2)

Better Approach:

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find all
// the divisors of the first
// N natural numbers
  
#include <bits/stdc++.h>
  
using namespace std;
  
// Function to find the factors of
// the numbers from 1 to N
void factors(int n)
{
    int i, j;
    cout << "1 -->1\n";
      
    // Loop to find the factors
    // of the first N natural 
    // numbers of the integer
    for (i = 2; i <= n; i++) {
        cout << i << " -->";
        for (j = 1; j * j <= i; j++) {
            if (i % j == 0){
                cout << j << ", ";
                if (i / j != j)
                cout << i/j << ", ";
            }
        }
        cout << "\n";
    }
}
  
// Driver Code
int main()
{
    int n = 5;
    factors(n);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find all
// the divisors of the first
// N natural numbers
import java.util.*;
class GFG{
  
// Function to find the factors of
// the numbers from 1 to N
static void factors(int n)
{
    int i, j;
    System.out.print("1 -->1\n");
      
    // Loop to find the factors
    // of the first N natural 
    // numbers of the integer
    for (i = 2; i <= n; i++) 
    {
        System.out.print(i + " -->");
        for (j = 1; j * j <= i; j++) 
        {
            if (i % j == 0)
            {
                System.out.print(j + ", ");
                if (i / j != j)
                    System.out.print(i / j + ", ");
            }
        }
        System.out.print("\n");
    }
}
  
// Driver Code
public static void main(String args[])
{
    int n = 5;
    factors(n);
}
}
  
// This code is contributed by Code_Mech
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to find all
# the divisors of the first
# N natural numbers
  
# Function to find the factors of
# the numbers from 1 to N
def factors(n):
      
    print("1 -->1");
  
    # Loop to find the factors
    # of the first N natural
    # numbers of the integer
    for i in range(2, n + 1):
        print(i, " -->", end = "");
          
        for j in range(1, int(pow(i, 1))):
            if (i % j == 0):
                print(j, ", ", end = "");
                  
                if (i // j != j):
                    print(i // j, ", ", end = "");
              
        print(end = "\n");
      
# Driver Code
if __name__ == '__main__':
      
    n = 5;
    factors(n);
  
# This code is contributed by gauravrajput1
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find all
// the divisors of the first
// N natural numbers
using System;
class GFG{
  
// Function to find the factors of
// the numbers from 1 to N
static void factors(int n)
{
    int i, j;
    Console.Write("1 -->1\n");
      
    // Loop to find the factors
    // of the first N natural 
    // numbers of the integer
    for (i = 2; i <= n; i++) 
    {
        Console.Write(i + " -->");
        for (j = 1; j * j <= i; j++) 
        {
            if (i % j == 0)
            {
                Console.Write(j + ", ");
                if (i / j != j)
                    Console.Write(i / j + ", ");
            }
        }
        Console.Write("\n");
    }
}
  
// Driver Code
public static void Main()
{
    int n = 5;
    factors(n);
}
}
  
// This code is contributed by Code_Mech
chevron_right

Output: 
1 -->1
2 -->1, 2, 
3 -->1, 3, 
4 -->1, 4, 2, 
5 -->1, 5, 

Time Complexity: O(N*sqrt(N)) 

Efficient Approach: The idea is to precompute the factors of the numbers with the help of the Sieve of Eratosthenes. Then finally iterate over the first N natural numbers to find the factors.

Below is the implementation of the above approach:

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to find the 
// factors of first N natural 
// numbers 
  
#include <bits/stdc++.h>
  
using namespace std;
  
const int MAX = 1e5; 
    
// Initialize global divisor vector 
// array of sequence container 
vector<int> divisor[MAX + 1]; 
  
// Calculate all 
// divisors of number 
void sieve() 
    for (int i = 1; i <= MAX; ++i) { 
        for (int j = i; j <= MAX; j += i) 
            divisor[j].push_back(i); 
    
}
  
// Function to find the 
// factors of first n
// natural numbers
void findNFactors(int n){
    for(int i = 1; i <= n; i++){
        cout << i << "-->";
        for (auto &divi: divisor[i]){
            cout << divi << ", ";
        }
        cout << "\n";
    }
}
  
// Driver Code
int main()
{
    int n = 5;
    sieve();
      
    // Function Call
    findNFactors(n);
}
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation to find the 
// factors of first N natural 
// numbers 
import java.util.*;
class GFG{
  
static int MAX = (int) 1e5; 
    
// Initialize global divisor vector 
// array of sequence container 
static Vector<Integer> []divisor = new Vector[MAX + 1]; 
  
// Calculate all 
// divisors of number 
static void sieve() 
    for (int i = 1; i <= MAX; ++i) 
    
        for (int j = i; j <= MAX; j += i) 
            divisor[j].add(i); 
    
}
  
// Function to find the 
// factors of first n
// natural numbers
static void findNFactors(int n)
{
    for(int i = 1; i <= n; i++)
    {
        System.out.print(i+ "-->");
        for (int divi: divisor[i])
        {
            System.out.print(divi+ ", ");
        }
        System.out.print("\n");
    }
}
  
// Driver Code
public static void main(String[] args)
{
    int n = 5;
    for (int i = 0; i < divisor.length; i++)
        divisor[i] = new Vector<Integer>();
    sieve();
      
    // Function Call
    findNFactors(n);
}
}
  
// This code is contributed by Princi Singh
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find the factors
# of first N natural numbers
MAX = 100001
  
# Initialize divisor list(array)
# of sequence container
divisor = [[] for x in range(MAX)] 
  
# Calculate all divisors of a number
def sieve():
  
    for i in range(1, MAX):
        for j in range(i, MAX, i):
            divisor[j].append(i)
  
# Function to find the factors of
# first n natural numbers
def findNFactors (n):
  
    for i in range(1, n + 1):
        print(i, " --> ", end = '')
          
        for divi in divisor[i]:
            print(divi, ", ", end = '')
        print()
  
# Driver code
if __name__ == '__main__':
  
    n = 5
    sieve()
  
    # Function call
    findNFactors(n)
  
# This code is contributed by himanshu77
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to find the 
// factors of first N natural 
// numbers 
using System;
using System.Collections.Generic;
   
public class GFG{
   
static int MAX = (int) 1e5; 
     
// Initialize global divisor vector 
// array of sequence container 
static List<int> []divisor = new List<int>[MAX + 1]; 
   
// Calculate all 
// divisors of number 
static void sieve() 
    for (int i = 1; i <= MAX; ++i) 
    
        for (int j = i; j <= MAX; j += i) 
            divisor[j].Add(i); 
    
}
   
// Function to find the 
// factors of first n
// natural numbers
static void findNFactors(int n)
{
    for(int i = 1; i <= n; i++)
    {
        Console.Write(i+ "-->");
        foreach (int divi in divisor[i])
        {
            Console.Write(divi+ ", ");
        }
        Console.Write("\n");
    }
}
   
// Driver Code
public static void Main(String[] args)
{
    int n = 5;
    for (int i = 0; i < divisor.Length; i++)
        divisor[i] = new List<int>();
    sieve();
       
    // Function Call
    findNFactors(n);
}
}
   
// This code is contributed by shikhasingrajput
chevron_right

Output: 
1-->1, 
2-->1, 2, 
3-->1, 3, 
4-->1, 2, 4, 
5-->1, 5,

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Article Tags :