Find a triplet that sum to a given value

Given an array and a value, find if there is a triplet in array whose sum is equal to the given value. If there is such a triplet present in array, then print the triplet and return true. Else return false. 
Example: 

Input: array = {12, 3, 4, 1, 6, 9}, sum = 24;
Output: 12, 3, 9
Explanation: There is a triplet (12, 3 and 9) present
in the array whose sum is 24. 

Input: array = {1, 2, 3, 4, 5}, sum = 9
Output: 5, 3, 1
Explanation: There is a triplet (5, 3 and 1) present 
in the array whose sum is 9. 

Method 1: This is the naive approach towards solving the above problem.  

  • Approach: A simple method is to generate all possible triplets and compare the sum of every triplet with the given value. The following code implements this simple method using three nested loops.
  • Algorithm: 
    1. Given an array of length n and a sum s
    2. Create three nested loop first loop runs from start to end (loop counter i), second loop runs from i+1 to end (loop counter j) and third loop runs from j+1 to end (loop counter k)
    3. The counter of these loops represent the index of 3 elements of the triplets.
    4. Find the sum of ith, jth and kth element. If the sum is equal to given sum. Print the triplet and break.
    5. If there is no triplet, then print that no triplet exist.
  • Implementation: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <bits/stdc++.h>
using namespace std;
  
// returns true if there is triplet with sum equal 
// to 'sum' present in A[]. Also, prints the triplet 
bool find3Numbers(int A[], int arr_size, int sum) 
    int l, r; 
  
    // Fix the first element as A[i] 
    for (int i = 0; i < arr_size - 2; i++)
    
  
        // Fix the second element as A[j] 
        for (int j = i + 1; j < arr_size - 1; j++)
        
  
            // Now look for the third number 
            for (int k = j + 1; k < arr_size; k++)
            
                if (A[i] + A[j] + A[k] == sum)
                
                    cout << "Triplet is " << A[i] <<
                        ", " << A[j] << ", " << A[k]; 
                    return true
                
            
        
    
  
    // If we reach here, then no triplet was found 
    return false
  
/* Driver code */
int main() 
    int A[] = { 1, 4, 45, 6, 10, 8 }; 
    int sum = 22; 
    int arr_size = sizeof(A) / sizeof(A[0]); 
    find3Numbers(A, arr_size, sum); 
    return 0; 
  
// This is code is contributed by rathbhupendra

chevron_right


C

filter_none

edit
close

play_arrow

link
brightness_4
code

#include <stdio.h>
  
// returns true if there is triplet with sum equal
// to 'sum' present in A[]. Also, prints the triplet
bool find3Numbers(int A[], int arr_size, int sum)
{
    int l, r;
  
    // Fix the first element as A[i]
    for (int i = 0; i < arr_size - 2; i++) {
  
        // Fix the second element as A[j]
        for (int j = i + 1; j < arr_size - 1; j++) {
  
            // Now look for the third number
            for (int k = j + 1; k < arr_size; k++) {
                if (A[i] + A[j] + A[k] == sum) {
                    printf("Triplet is %d, %d, %d",
                           A[i], A[j], A[k]);
                    return true;
                }
            }
        }
    }
  
    // If we reach here, then no triplet was found
    return false;
}
  
/* Driver program to test above function */
int main()
{
    int A[] = { 1, 4, 45, 6, 10, 8 };
    int sum = 22;
    int arr_size = sizeof(A) / sizeof(A[0]);
    find3Numbers(A, arr_size, sum);
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find a triplet
class FindTriplet {
  
    // returns true if there is triplet with sum equal
    // to 'sum' present in A[]. Also, prints the triplet
    boolean find3Numbers(int A[], int arr_size, int sum)
    {
        int l, r;
  
        // Fix the first element as A[i]
        for (int i = 0; i < arr_size - 2; i++) {
  
            // Fix the second element as A[j]
            for (int j = i + 1; j < arr_size - 1; j++) {
  
                // Now look for the third number
                for (int k = j + 1; k < arr_size; k++) {
                    if (A[i] + A[j] + A[k] == sum) {
                        System.out.print("Triplet is " + A[i] + ", " + A[j] + ", " + A[k]);
                        return true;
                    }
                }
            }
        }
  
        // If we reach here, then no triplet was found
        return false;
    }
  
    // Driver program to test above functions
    public static void main(String[] args)
    {
        FindTriplet triplet = new FindTriplet();
        int A[] = { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.length;
  
        triplet.find3Numbers(A, arr_size, sum);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find a triplet 
# that sum to a given value
  
# returns true if there is triplet with
# sum equal to 'sum' present in A[]. 
# Also, prints the triplet
def find3Numbers(A, arr_size, sum):
  
    # Fix the first element as A[i]
    for i in range( 0, arr_size-2):
  
        # Fix the second element as A[j]
        for j in range(i + 1, arr_size-1): 
              
            # Now look for the third number
            for k in range(j + 1, arr_size):
                if A[i] + A[j] + A[k] == sum:
                    print("Triplet is", A[i],
                          ", ", A[j], ", ", A[k])
                    return True
      
    # If we reach here, then no 
    # triplet was found
    return False
  
# Driver program to test above function 
A = [1, 4, 45, 6, 10, 8]
sum = 22
arr_size = len(A)
find3Numbers(A, arr_size, sum)
  
# This code is contributed by Smitha Dinesh Semwal 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find a triplet
// that sum to a given value
using System;
  
class GFG {
    // returns true if there is
    // triplet with sum equal
    // to 'sum' present in A[].
    // Also, prints the triplet
    static bool find3Numbers(int[] A,
                             int arr_size,
                             int sum)
    {
        // Fix the first
        // element as A[i]
        for (int i = 0;
             i < arr_size - 2; i++) {
  
            // Fix the second
            // element as A[j]
            for (int j = i + 1;
                 j < arr_size - 1; j++) {
  
                // Now look for
                // the third number
                for (int k = j + 1;
                     k < arr_size; k++) {
                    if (A[i] + A[j] + A[k] == sum) {
                        Console.WriteLine("Triplet is " + A[i] + ", " + A[j] + ", " + A[k]);
                        return true;
                    }
                }
            }
        }
  
        // If we reach here,
        // then no triplet was found
        return false;
    }
  
    // Driver Code
    static public void Main()
    {
        int[] A = { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.Length;
  
        find3Numbers(A, arr_size, sum);
    }
}
  
// This code is contributed by m_kit

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find a triplet 
// that sum to a given value
  
// returns true if there is 
// triplet with sum equal to
// 'sum' present in A[].
// Also, prints the triplet
function find3Numbers($A, $arr_size, $sum)
{
    $l; $r;
  
    // Fix the first
    // element as A[i]
    for ($i = 0; 
         $i < $arr_size - 2; $i++)
    {
    // Fix the second 
    // element as A[j]
    for ($j = $i + 1; 
         $j < $arr_size - 1; $j++)
    {
        // Now look for the
        // third number
        for ($k = $j + 1; 
             $k < $arr_size; $k++)
        {
            if ($A[$i] + $A[$j] + 
                $A[$k] == $sum)
            {
                echo "Triplet is", " ", $A[$i],
                                  ", ", $A[$j], 
                                  ", ", $A[$k];
                return true;
            }
        }
    }
    }
  
    // If we reach here, then
    // no triplet was found
    return false;
}
// Driver Code
$A = array(1, 4, 45, 
           6, 10, 8);
$sum = 22;
$arr_size = sizeof($A);
  
find3Numbers($A, $arr_size, $sum);
  
// This code is contributed by ajit
?>

chevron_right


Output

Triplet is 4, 10, 8
  • Complexity Analysis: 
    • Time Complexity: O(n3). 
      There are three nested loops traversing the array, so the time complexity is O(n^3)
    • Space Complexity: O(1). 
      As no extra space is required.

Method 2: This method uses sorting to increase the efficiency of the code. 

  • Approach: By Sorting the array the efficiency of the algorithm can be improved. This efficient approach uses the two-pointer technique. Traverse the array and fix the first element of the triplet. Now use the Two Pointers algorithm to find if there is a pair whose sum is equal to x – array[i]. Two pointers algorithm take linear time so it is better than a nested loop.
  • Algorithm : 
    1. Sort the given array.
    2. Loop over the array and fix the first element of the possible triplet, arr[i].
    3. Then fix two pointers, one at i + 1 and the other at n – 1. And look at the sum, 
      1. If the sum is smaller than the required sum, increment the first pointer.
      2. Else, If the sum is bigger, Decrease the end pointer to reduce the sum.
      3. Else, if the sum of elements at two-pointer is equal to given sum then print the triplet and break.
  • Implementation: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find a triplet
#include <bits/stdc++.h>
using namespace std;
  
// returns true if there is triplet with sum equal
// to 'sum' present in A[]. Also, prints the triplet
bool find3Numbers(int A[], int arr_size, int sum)
{
    int l, r;
  
    /* Sort the elements */
    sort(A, A + arr_size);
  
    /* Now fix the first element one by one and find the
       other two elements */
    for (int i = 0; i < arr_size - 2; i++) {
  
        // To find the other two elements, start two index
        // variables from two corners of the array and move
        // them toward each other
        l = i + 1; // index of the first element in the
        // remaining elements
  
        r = arr_size - 1; // index of the last element
        while (l < r) {
            if (A[i] + A[l] + A[r] == sum) {
                printf("Triplet is %d, %d, %d", A[i],
                       A[l], A[r]);
                return true;
            }
            else if (A[i] + A[l] + A[r] < sum)
                l++;
            else // A[i] + A[l] + A[r] > sum
                r--;
        }
    }
  
    // If we reach here, then no triplet was found
    return false;
}
  
/* Driver program to test above function */
int main()
{
    int A[] = { 1, 4, 45, 6, 10, 8 };
    int sum = 22;
    int arr_size = sizeof(A) / sizeof(A[0]);
  
    find3Numbers(A, arr_size, sum);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find a triplet
class FindTriplet {
  
    // returns true if there is triplet with sum equal
    // to 'sum' present in A[]. Also, prints the triplet
    boolean find3Numbers(int A[], int arr_size, int sum)
    {
        int l, r;
  
        /* Sort the elements */
        quickSort(A, 0, arr_size - 1);
  
        /* Now fix the first element one by one and find the
           other two elements */
        for (int i = 0; i < arr_size - 2; i++) {
  
            // To find the other two elements, start two index variables
            // from two corners of the array and move them toward each
            // other
            l = i + 1; // index of the first element in the remaining elements
            r = arr_size - 1; // index of the last element
            while (l < r) {
                if (A[i] + A[l] + A[r] == sum) {
                    System.out.print("Triplet is " + A[i] + ", " + A[l] + ", " + A[r]);
                    return true;
                }
                else if (A[i] + A[l] + A[r] < sum)
                    l++;
  
                else // A[i] + A[l] + A[r] > sum
                    r--;
            }
        }
  
        // If we reach here, then no triplet was found
        return false;
    }
  
    int partition(int A[], int si, int ei)
    {
        int x = A[ei];
        int i = (si - 1);
        int j;
  
        for (j = si; j <= ei - 1; j++) {
            if (A[j] <= x) {
                i++;
                int temp = A[i];
                A[i] = A[j];
                A[j] = temp;
            }
        }
        int temp = A[i + 1];
        A[i + 1] = A[ei];
        A[ei] = temp;
        return (i + 1);
    }
  
    /* Implementation of Quick Sort
    A[] --> Array to be sorted
    si  --> Starting index
    ei  --> Ending index
     */
    void quickSort(int A[], int si, int ei)
    {
        int pi;
  
        /* Partitioning index */
        if (si < ei) {
            pi = partition(A, si, ei);
            quickSort(A, si, pi - 1);
            quickSort(A, pi + 1, ei);
        }
    }
  
    // Driver program to test above functions
    public static void main(String[] args)
    {
        FindTriplet triplet = new FindTriplet();
        int A[] = { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.length;
  
        triplet.find3Numbers(A, arr_size, sum);
    }
}

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find a triplet
  
# returns true if there is triplet
# with sum equal to 'sum' present
# in A[]. Also, prints the triplet
def find3Numbers(A, arr_size, sum):
  
    # Sort the elements 
    A.sort()
  
    # Now fix the first element 
    # one by one and find the
    # other two elements 
    for i in range(0, arr_size-2):
      
  
        # To find the other two elements,
        # start two index variables from
        # two corners of the array and
        # move them toward each other
          
        # index of the first element
        # in the remaining elements
        l = i + 1 
          
        # index of the last element
        r = arr_size-1 
        while (l < r):
          
            if( A[i] + A[l] + A[r] == sum):
                print("Triplet is", A[i], 
                     ', ', A[l], ', ', A[r]);
                return True
              
            elif (A[i] + A[l] + A[r] < sum):
                l += 1
            else: # A[i] + A[l] + A[r] > sum
                r -= 1
  
    # If we reach here, then
    # no triplet was found
    return False
  
# Driver program to test above function 
A = [1, 4, 45, 6, 10, 8]
sum = 22
arr_size = len(A)
  
find3Numbers(A, arr_size, sum)
  
# This is contributed by Smitha Dinesh Semwal

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find a triplet
using System;
  
class GFG {
  
    // returns true if there is triplet
    // with sum equal to 'sum' present
    // in A[]. Also, prints the triplet
    bool find3Numbers(int[] A, int arr_size,
                      int sum)
    {
        int l, r;
  
        /* Sort the elements */
        quickSort(A, 0, arr_size - 1);
  
        /* Now fix the first element 
    one by one and find the
    other two elements */
        for (int i = 0; i < arr_size - 2; i++) {
  
            // To find the other two elements,
            // start two index variables from
            // two corners of the array and
            // move them toward each other
            l = i + 1; // index of the first element
            // in the remaining elements
            r = arr_size - 1; // index of the last element
            while (l < r) {
                if (A[i] + A[l] + A[r] == sum) {
                    Console.Write("Triplet is " + A[i] + ", " + A[l] + ", " + A[r]);
                    return true;
                }
                else if (A[i] + A[l] + A[r] < sum)
                    l++;
  
                else // A[i] + A[l] + A[r] > sum
                    r--;
            }
        }
  
        // If we reach here, then
        // no triplet was found
        return false;
    }
  
    int partition(int[] A, int si, int ei)
    {
        int x = A[ei];
        int i = (si - 1);
        int j;
  
        for (j = si; j <= ei - 1; j++) {
            if (A[j] <= x) {
                i++;
                int temp = A[i];
                A[i] = A[j];
                A[j] = temp;
            }
        }
        int temp1 = A[i + 1];
        A[i + 1] = A[ei];
        A[ei] = temp1;
        return (i + 1);
    }
  
    /* Implementation of Quick Sort
A[] --> Array to be sorted
si --> Starting index
ei --> Ending index
*/
    void quickSort(int[] A, int si, int ei)
    {
        int pi;
  
        /* Partitioning index */
        if (si < ei) {
            pi = partition(A, si, ei);
            quickSort(A, si, pi - 1);
            quickSort(A, pi + 1, ei);
        }
    }
  
    // Driver Code
    static void Main()
    {
        GFG triplet = new GFG();
        int[] A = new int[] { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.Length;
  
        triplet.find3Numbers(A, arr_size, sum);
    }
}
  
// This code is contributed by mits

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find a triplet
  
// returns true if there is 
// triplet with sum equal to
// 'sum' present in A[]. Also,
// prints the triplet
function find3Numbers($A, $arr_size, $sum)
{
    $l; $r;
  
    /* Sort the elements */
    sort($A);
  
    /* Now fix the first element 
    one by one and find the
    other two elements */
    for ($i = 0; $i < $arr_size - 2; $i++) 
    {
  
        // To find the other two elements, 
        // start two index variables from 
        // two corners of the array and 
        // move them toward each other
        $l = $i + 1; // index of the first element 
                     // in the remaining elements
  
        // index of the last element
        $r = $arr_size - 1; 
        while ($l < $r
        {
            if ($A[$i] + $A[$l] + 
                $A[$r] == $sum)
            {
                echo "Triplet is ", $A[$i], " ",
                                    $A[$l], " "
                                    $A[$r], "\n";
                return true;
            }
            else if ($A[$i] + $A[$l] +
                     $A[$r] < $sum)
                $l++;
            else // A[i] + A[l] + A[r] > sum
                $r--;
        }
    }
  
    // If we reach here, then
    // no triplet was found
    return false;
}
  
// Driver Code
$A = array (1, 4, 45, 6, 10, 8);
$sum = 22;
$arr_size = sizeof($A);
  
find3Numbers($A, $arr_size, $sum);
  
// This code is contributed by ajit
?>

chevron_right


Output



Triplet is 4, 8, 10
  • Complexity Analysis: 
    • Time complexity: O(N^2). 
      There are only two nested loops traversing the array, so time complexity is O(n^2). Two pointers algorithm takes O(n) time and the first element can be fixed using another nested traversal.
    • Space Complexity: O(1). 
      As no extra space is required.

Method 3: This is a Hashing based solution. 

  • Approach: This approach uses extra space but is more simpler than the two pointers approach. Run two loops outer loop from start to end and inner loop from i+1 to end. Create a hashmap or set to store the elements in between i+1 to j-1. So if the given sum is x, check if there is a number in the set which is equal to x – arr[i] – arr[j]. If yes print the triplet. 
     
  • Algorithm: 
    1. Traverse the array from start to end. (loop counter i)
    2. Create a HashMap or set to store unique pairs.
    3. Run another loop from i+1 to end of the array. (loop counter j)
    4. If there is an element in the set which is equal to x- arr[i] – arr[j], then print the triplet (arr[i], arr[j], x-arr[i]-arr[j]) and break
    5. Insert the jth element in the set.
  • Implementation: 

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find a triplet using Hashing
#include <bits/stdc++.h>
using namespace std;
  
// returns true if there is triplet with sum equal
// to 'sum' present in A[]. Also, prints the triplet
bool find3Numbers(int A[], int arr_size, int sum)
{
    // Fix the first element as A[i]
    for (int i = 0; i < arr_size - 2; i++) 
    {
  
        // Find pair in subarray A[i+1..n-1]
        // with sum equal to sum - A[i]
        unordered_set<int> s;
        int curr_sum = sum - A[i];
        for (int j = i + 1; j < arr_size; j++) 
        {
            if (s.find(curr_sum - A[j]) != s.end()) 
            {
                printf("Triplet is %d, %d, %d", A[i],
                       A[j], curr_sum - A[j]);
                return true;
            }
            s.insert(A[j]);
        }
    }
  
    // If we reach here, then no triplet was found
    return false;
}
  
/* Driver program to test above function */
int main()
{
    int A[] = { 1, 4, 45, 6, 10, 8 };
    int sum = 22;
    int arr_size = sizeof(A) / sizeof(A[0]);
  
    find3Numbers(A, arr_size, sum);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find a triplet using Hashing
import java.util.*;
  
class GFG {
  
    // returns true if there is triplet
    // with sum equal to 'sum' present
    // in A[]. Also, prints the triplet
    static boolean find3Numbers(int A[],
                                int arr_size, int sum)
    {
        // Fix the first element as A[i]
        for (int i = 0; i < arr_size - 2; i++) {
  
            // Find pair in subarray A[i+1..n-1]
            // with sum equal to sum - A[i]
            HashSet<Integer> s = new HashSet<Integer>();
            int curr_sum = sum - A[i];
            for (int j = i + 1; j < arr_size; j++) 
            {
                if (s.contains(curr_sum - A[j])) 
                {
                    System.out.printf("Triplet is %d, 
                                        %d, %d", A[i],
                                      A[j], curr_sum - A[j]);
                    return true;
                }
                s.add(A[j]);
            }
        }
  
        // If we reach here, then no triplet was found
        return false;
    }
  
    /* Driver code */
    public static void main(String[] args)
    {
        int A[] = { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.length;
  
        find3Numbers(A, arr_size, sum);
    }
}
  
// This code has been contributed by 29AjayKumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to find a triplet using Hashing
# returns true if there is triplet with sum equal
# to 'sum' present in A[]. Also, prints the triplet
def find3Numbers(A, arr_size, sum):
    for i in range(0, arr_size-1):
        # Find pair in subarray A[i + 1..n-1] 
        # with sum equal to sum - A[i]
        s = set()
        curr_sum = sum - A[i]
        for j in range(i + 1, arr_size):
            if (curr_sum - A[j]) in s:
                print("Triplet is", A[i], 
                        ", ", A[j], ", ", curr_sum-A[j])
                return True
            s.add(A[j])
      
    return False
  
# Driver program to test above function 
A = [1, 4, 45, 6, 10, 8
sum = 22
arr_size = len(A) 
find3Numbers(A, arr_size, sum
  
# This is contributed by Yatin gupta

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find a triplet using Hashing
using System;
using System.Collections.Generic;
public class GFG {
  
    // returns true if there is triplet
    // with sum equal to 'sum' present
    // in A[]. Also, prints the triplet
    static bool find3Numbers(int[] A,
                             int arr_size, int sum)
    {
        // Fix the first element as A[i]
        for (int i = 0; i < arr_size - 2; i++) {
  
            // Find pair in subarray A[i+1..n-1]
            // with sum equal to sum - A[i]
            HashSet<int> s = new HashSet<int>();
            int curr_sum = sum - A[i];
            for (int j = i + 1; j < arr_size; j++) 
            {
                if (s.Contains(curr_sum - A[j])) 
                {
                    Console.Write("Triplet is {0}, {1}, {2}", A[i],
                                  A[j], curr_sum - A[j]);
                    return true;
                }
                s.Add(A[j]);
            }
        }
  
        // If we reach here, then no triplet was found
        return false;
    }
  
    /* Driver code */
    public static void Main()
    {
        int[] A = { 1, 4, 45, 6, 10, 8 };
        int sum = 22;
        int arr_size = A.Length;
  
        find3Numbers(A, arr_size, sum);
    }
}
  
/* This code contributed by PrinciRaj1992 */

chevron_right


Output

Triplet is 4, 8, 10

  • Complexity Analysis: 
    • Time complexity: O(N^2). 
      There are only two nested loops traversing the array, so time complexity is O(n^2).
    • Space Complexity: O(N). 
      As no extra space is required. 

How to print all triplets with given sum? 
Please refer Find all triplets with zero sum
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up