Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find a Symmetric matrix of order N that contain integers from 0 to N-1 and main diagonal should contain only 0’s

  • Last Updated : 17 Nov, 2021

Given an integer N. The task is to generate a symmetric matrix of order N*N having the following properties. 
 

  1. Main diagonal should contain only 0’s
  2. The matrix should contain elements from 0 to N-1 only.

Examples: 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: N = 4 
Output: 
0 2 3 1 
2 0 1 3 
3 1 0 2 
1 3 2 0
Input: N = 5 
Output: 
0 2 3 4 1 
2 0 4 1 3 
3 4 0 2 1 
4 1 2 0 3 
1 3 1 3 0 
 



 

Approach: Since the required matrix has to be a square matrix, we can generate a symmetric matrix containing an element from 1 to n-1, excluding 0. We will deal with the case of 0 later. 
Take for example when N = 4: 
We first generate a symmetric matrix, and it can be easily done by filling every row from 1 to n-1 in cyclic order, i.e. fill the first row by 1 2 3, and do this for all subsequent rows in cyclic order. 
 

So, the final matrix will be, 
1 2 3 
2 3 1 
3 1 2 
 

Now, we have generated a symmetric matrix containing elements from 1 to n. Let’s discuss case 0. We will take the benefit of the above matrix being symmetrical, we will add a column of 0 and rows of 0 like this, 
 

1 2 3 0 
2 3 1 0 
3 1 2 0 
0 0 0 0 
 

Now, we have to put all 0 in diagonal. For this, we will start with the first row till last-1 row and swap all the 0 with the number that is there in each row and will also make a change in the last row like this: 
 

For row 1, we swap 0 and 1 and also put last row’s 1st element with the number we swapped i.e. 1. 
0 2 3 1 
2 3 1 0 
3 1 2 0 
1 0 0 0
For row 2 we swap 0 and 3, and make the second element of the last row also 3. 
0 2 3 1 
2 0 1 3 
3 1 2 0 
1 3 0 0 
and so on… 
The final matrix generated will be the required matrix. 
 

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to generate the required matrix
void solve(long long n)
{
    long long initial_array[n - 1][n - 1], final_array[n][n];
 
    for (long long i = 0; i < n - 1; ++i)
        initial_array[0][i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long long i = 1; i < n - 1; ++i)
        for (long long j = 0; j < n - 1; ++j)
            initial_array[i][j]
                = initial_array[i - 1][(j + 1) % (n - 1)];
 
    // Store initial array into final array
    for (long long i = 0; i < n - 1; ++i)
        for (long long j = 0; j < n - 1; ++j)
            final_array[i][j] = initial_array[i][j];
 
    // Fill the last row and column with 0's
    for (long long i = 0; i < n; ++i)
        final_array[i][n - 1] = final_array[n - 1][i] = 0;
 
    for (long long i = 0; i < n; ++i) {
        long long t0 = final_array[i][i];
        long long t1 = final_array[i][n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        swap(final_array[i][i], final_array[i][n - 1]);
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[n - 1][i] = t0;
    }
 
    // Print the final array
    for (long long i = 0; i < n; ++i) {
        for (long long j = 0; j < n; ++j)
            cout << final_array[i][j] << " ";
        cout << endl;
    }
}
 
// Driver code
int main()
{
    long long n = 5;
    solve(n);
 
    return 0;
}

Java




// Java implementation of the approach
class GFG
{
 
// Function to generate the required matrix
static void solve(long n)
{
    long initial_array[][]= new long[(int)n - 1][(int)n - 1],
                    final_array[][]= new long[(int)n][(int)n];
 
    for (long i = 0; i < n - 1; ++i)
        initial_array[0][(int)i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long i = 1; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            initial_array[(int)i][(int)j]
                = initial_array[(int)i - 1][(int)((int)j + 1) % ((int)n - 1)];
 
    // Store initial array into final array
    for (long i = 0; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            final_array[(int)i][(int)j] = initial_array[(int)i][(int)j];
 
    // Fill the last row and column with 0's
    for (long i = 0; i < n; ++i)
        final_array[(int)i][(int)n - 1] = final_array[(int)n - 1][(int)i] = 0;
 
    for (long i = 0; i < n; ++i)
    {
        long t0 = final_array[(int)i][(int)i];
        long t1 = final_array[(int)i][(int)n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        long s = final_array[(int)i][(int)i];
        final_array[(int)i][(int)i]=final_array[(int)i][(int)n - 1];
        final_array[(int)i][(int)n - 1]=s;
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[(int)n - 1][(int)i] = t0;
    }
 
    // Print the final array
    for (long i = 0; i < n; ++i)
    {
        for (long j = 0; j < n; ++j)
            System.out.print( final_array[(int)i][(int)j] + " ");
        System.out.println();
    }
}
 
// Driver code
public static void main(String args[])
{
    long n = 5;
    solve(n);
}
}
 
// This code is contributed by Arnab Kundu
   

Python3




# Python 3 implementation of the approach
 
# Function to generate the required matrix
def solve(n):
    initial_array = [[0 for i in range(n-1)] for j in range(n-1)]
    final_array = [[0 for i in range(n)]for j in range(n)]
 
    for i in range(n - 1):
        initial_array[0][i] = i + 1
 
    # Form cyclic array of elements 1 to n-1
    for i in range(1, n - 1):
        for j in range(n - 1):
            initial_array[i][j] = initial_array[i - 1][(j + 1) % (n - 1)]
 
    # Store initial array into final array
    for i in range(n-1):
        for j in range(n-1):
            final_array[i][j] = initial_array[i][j]
 
    # Fill the last row and column with 0's
    for i in range(n):
        final_array[i][n - 1] = final_array[n - 1][i] = 0
 
    for i in range(n):
        t0 = final_array[i][i]
        t1 = final_array[i][n - 1]
 
        # Swap 0 and the number present
        # at the current indexed row
        temp = final_array[i][i]
        final_array[i][i] = final_array[i][n - 1]
        final_array[i][n - 1] = temp
 
        # Also make changes in the last row
        # with the number we swapped
        final_array[n - 1][i] = t0
 
    # Print the final array
    for i in range(n):
        for j in range(n):
            print(final_array[i][j],end = " ")
        print("\n",end = "")
 
# Driver code
if __name__ == '__main__':
    n = 5
    solve(n)
     
# This code is contributed by
# Surendra_Gangwar

C#




// C# implementation of the approach
using System;
 
class GFG
{
 
// Function to generate the required matrix
static void solve(long n)
{
    long [,]initial_array = new long[(int)n - 1,(int)n - 1];
    long [,]final_array = new long[(int)n,(int)n];
 
    for (long i = 0; i < n - 1; ++i)
        initial_array[0,(int)i] = i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for (long i = 1; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            initial_array[(int)i,(int)j]
                = initial_array[(int)i - 1,(int)((int)j + 1) % ((int)n - 1)];
 
    // Store initial array into final array
    for (long i = 0; i < n - 1; ++i)
        for (long j = 0; j < n - 1; ++j)
            final_array[(int)i,(int)j] = initial_array[(int)i,(int)j];
 
    // Fill the last row and column with 0's
    for (long i = 0; i < n; ++i)
        final_array[(int)i,(int)n - 1] = final_array[(int)n - 1,(int)i] = 0;
 
    for (long i = 0; i < n; ++i)
    {
        long t0 = final_array[(int)i, (int)i];
        long t1 = final_array[(int)i, (int)n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        long s = final_array[(int)i,(int)i];
        final_array[(int)i,(int)i] = final_array[(int)i, (int)n - 1];
        final_array[(int)i,(int)n - 1] = s;
 
        // Also make changes in the last row
        // with the number we swapped
        final_array[(int)n - 1,(int)i] = t0;
    }
 
    // Print the final array
    for (long i = 0; i < n; ++i)
    {
        for (long j = 0; j < n; ++j)
            Console.Write( final_array[(int)i,(int)j] + " ");
        Console.WriteLine();
    }
}
 
// Driver code
public static void Main(String []args)
{
    long n = 5;
    solve(n);
}
}
 
// This code contributed by Rajput-Ji

PHP




<?php
// Php implementation of the approach
 
// Function to generate the required matrix
function solve($n)
{
    $initial_array = array(array()) ;
    $final_array = array(array()) ;
 
    for ($i = 0; $i < $n - 1; ++$i)
        $initial_array[0][$i] = $i + 1;
 
    // Form cyclic array of elements 1 to n-1
    for ($i = 1; $i < $n - 1; ++$i)
        for ($j = 0; $j < $n - 1; ++$j)
            $initial_array[$i][$j] =
                $initial_array[$i - 1][($j + 1) % ($n - 1)];
 
    // Store initial array into final array
    for ($i = 0; $i < $n - 1; ++$i)
        for ($j = 0; $j < $n - 1; ++$j)
            $final_array[$i][$j] = $initial_array[$i][$j];
 
    // Fill the last row and column with 0's
    for ($i = 0; $i < $n; ++$i)
        $final_array[$i][$n - 1] = $final_array[$n - 1][$i] = 0;
 
    for ($i = 0; $i < $n; ++$i)
    {
        $t0 = $final_array[$i][$i];
        $t1 = $final_array[$i][$n - 1];
 
        // Swap 0 and the number present
        // at the current indexed row
        $temp = $final_array[$i][$i] ;
        $final_array[$i][$i] = $final_array[$i][$n - 1] ;
        $final_array[$i][$n - 1] = $temp ;
 
        // Also make changes in the last row
        // with the number we swapped
        $final_array[$n - 1][$i] = $t0;
    }
 
    // Print the final array
    for ($i = 0; $i < $n; ++$i)
    {
        for ($j = 0; $j < $n; ++$j)
            echo $final_array[$i][$j]," ";
        echo "\n";
    }
}
 
    // Driver code
    $n = 5;
    solve($n);
     
// This code is contributed by Ryuga
?>

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function to generate the required matrix
function solve(n)
{
    let initial_array = new Array(n-1);
    for (var i = 0; i < initial_array.length; i++) {
    initial_array[i] = new Array(2);
    }
     
    let final_array = new Array(n);
    for (var i = 0; i < final_array.length; i++) {
    final_array[i] = new Array(2);
    }
   
    for (let i = 0; i < n - 1; ++i)
        initial_array[0][i] = i + 1;
   
    // Form cyclic array of elements 1 to n-1
    for (let i = 1; i < n - 1; ++i)
        for (let j = 0; j < n - 1; ++j)
            initial_array[i][j]
                = initial_array[i - 1][(j + 1) % (n - 1)];
   
    // Store initial array into final array
    for (let i = 0; i < n - 1; ++i)
        for (let j = 0; j < n - 1; ++j)
            final_array[i][j] = initial_array[i][j];
   
    // Fill the last row and column with 0's
    for (let i = 0; i < n; ++i)
        final_array[i][n - 1] = final_array[n - 1][i] = 0;
   
    for (let i = 0; i < n; ++i)
    {
        let t0 = final_array[i][i];
        let t1 = final_array[i][n - 1];
   
        // Swap 0 and the number present
        // at the current indexed row
        let s = final_array[i][i];
        final_array[i][i]=final_array[i][n - 1];
        final_array[i][n - 1]=s;
   
        // Also make changes in the last row
        // with the number we swapped
        final_array[n - 1][i] = t0;
    }
   
    // Print the final array
    for (let i = 0; i < n; ++i)
    {
        for (let j = 0; j < n; ++j)
            document.write( final_array[i][j] + " ");
        document.write("<br/>");
    }
}  
 
// Driver Code
    let n = 5;
    solve(n);
   
  // This code is contributed by target_2.
</script>
Output
0 2 3 4 1 
2 0 4 1 3 
3 4 0 2 1 
4 1 2 0 3 
1 3 1 3 0 

Time Complexity: O(N2)

Auxiliary Space: O(N2)




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!