Skip to content
Related Articles

Related Articles

Save Article
Improve Article
Save Article
Like Article

Find a permutation of 2N numbers such that the result of given expression is exactly 2K

  • Last Updated : 13 May, 2021

Given two integers N and K, the task is to find a permutation of first 2*N natural numbers such that the following equation is satisfied. 
\sum\limits_{i=1}^N |A_{2i-1}-A_{2i}| - |\sum\limits_{i=1}^N A_{2i-1}-A_{2i}|=2K
Note: The value of K will always be less than or equal to N.
Examples: 
 

Input : N = 1,  K = 0
Output : 1 2
The result of the above expression will be:
|1-2|-|1-2| =0

Input : N = 2,  K = 1 
Output : 2 1 3 4
The result of the above expression will be:
(|2-1|+|3-4|)-(|2-1+3-4|) = 2

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach:
Consider the sorted permutation: 
 



1, 2, 3, 4, 5, 6.... 

The result of the expression will come out to be exactly 0. If we swap any 2 indices 2i-1 and 2i, the result will increase by exactly 2. So we need to make K such swaps. 
Below is the implementation of the above approach: 
 

C++




// C++ program to find the required permutation
// of first 2*N natural numbers
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the required permutation
// of first 2*N natural numbers
void printPermutation(int n, int k)
{
    // Iterate in blocks of 2
    for (int i = 1; i <= n; i++) {
        int x = 2 * i - 1;
        int y = 2 * i;
 
        // We need more increments, so print in reverse order
        if (i <= k)
            cout << y << " " << x << " ";
 
        // We have enough increments, so print in same order
        else
            cout << x << " " << y << " ";
    }
}
 
// Driver Code
int main()
{
    int n = 2, k = 1;
 
    printPermutation(n, k);
 
    return 0;
}

Java




// Java program to find the
// required permutation
// of first 2*N natural numbers
class GFG
{
         
    // Function to find the required permutation
    // of first 2*N natural numbers
    static void printPermutation(int n, int k)
    {
        // Iterate in blocks of 2
        for (int i = 1; i <= n; i++)
        {
            int x = 2 * i - 1;
            int y = 2 * i;
         
        // We need more increments,
        // so print in reverse order
        if (i <= k)
            System.out.print(y + " " + x + " ");
 
        // We have enough increments,
        // so print in same order
        else
            System.out.print(x + " " + y + " ");
        }
    }
         
    // Driver code
    public static void main(String []args)
    {
        int n = 2, k = 1;
        printPermutation(n, k);
    }
}
 
// This code is contributed by Ita_c.

Python3




# Python3 program to find the required
# permutation of first 2*N natural numbers
 
# Function to find the required permutation
# of first 2*N natural numbers
def printPermutation(n, k) :
     
    # Iterate in blocks of 2
    for i in range(1, n + 1) :
        x = 2 * i - 1;
        y = 2 * i;
 
        # We need more increments,
        # so print in reverse order
        if (i <= k) :
            print(y, x, end = " ");
 
        # We have enough increments,
        # so print in same order
        else :
            print(x, y, end = " ");
 
# Driver Code
if __name__ == "__main__" :
    n = 2; k = 1;
 
    printPermutation(n, k);
     
# This code is contributed by Ryuga

C#




using System;
 
// C# program to find the
// required permutation
// of first 2*N natural numbers
     
class GFG
{
         
    // Function to find the required permutation
    // of first 2*N natural numbers
    static void printPermutation(int n, int k)
    {
        // Iterate in blocks of 2
        for (int i = 1; i <= n; i++)
        {
            int x = 2 * i - 1;
            int y = 2 * i;
         
        // We need more increments,
        // so print in reverse order
        if (i <= k)
            Console.Write(y + " " + x + " ");
 
        // We have enough increments,
        // so print in same order
        else
            Console.Write(x + " " + y + " ");
        }
    }
         
    // Driver code
    public static void Main()
    {
        int n = 2, k = 1;
        printPermutation(n, k);
    }
}
 
// This code is contributed by
// shashank_sharma

PHP




<?php
// PHP program to find the required
// permutation of first 2*N natural numbers
 
// Function to find the required permutation
// of first 2*N natural numbers
function printPermutation($n, $k)
{
    // Iterate in blocks of 2
    for ($i = 1; $i <= $n; $i++)
    {
        $x = 2 * $i - 1;
        $y = 2 * $i;
 
        // We need more increments, so print
        // in reverse order
        if ($i <= $k)
            echo $y . " " . $x . " ";
 
        // We have enough increments,
        // so print in same order
        else
            echo $x . " " . $y . " ";
    }
}
 
// Driver Code
$n = 2;
$k = 1;
 
printPermutation($n, $k);
 
// This code is contributed by chandan_jnu
?>

Javascript




<script>
 
// javascript program to find the
// required permutation
// of first 2*N natural numbers
     
  
         
    // Function to find the required permutation
    // of first 2*N natural numbers
    function printPermutation( n,  k)
    {
        // Iterate in blocks of 2
        for (var i = 1; i <= n; i++)
        {
            var x = 2 * i - 1;
            var y = 2 * i;
         
        // We need more increments,
        // so print in reverse order
        if (i <= k)
            document.write(y + " " + x + " ");
 
        // We have enough increments,
        // so print in same order
        else
            document.write(x + " " + y + " ");
        }
    }
         
    // Driver code
  
        var n = 2, k = 1;
        printPermutation(n, k);
         
        // This code is contributed by bunnyram19.
         
</script>
Output: 
2 1 3 4

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :