Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Find a peak element in Linked List

  • Difficulty Level : Basic
  • Last Updated : 29 Jun, 2021

Given a Linked list of integers. The task is to find a peak element in it. An element in the list is said to be peak if it is NOT smaller than its neighbors. For corner elements, we need to consider only one neighbor. For example: 
 

  • If the input list is {5 -> 10 -> 20 -> 15}, 20 is the only peak element.
  • For input list {10 -> 20 -> 15 -> 2 -> 23 -> 90 -> 67}, there are two peak elements: 20 and 90. Note that it is needed to return any one peak element.

Following corner cases give a better idea about the problem: 
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

  1. If the input list is sorted in strictly increasing order, the last element is always a peak element. For example, 50 is peak element in {10 -> 20 -> 30 -> 40 -> 50}.
  2. If the input list is sorted in strictly decreasing order, the first element is always a peak element. 100 is the peak element in {100 -> 80 -> 60 -> 50 -> 20}.
  3. If all elements of the input list are same, every element is a peak element.

Examples
 



Input : List =  {1 -> 6 -> 8 -> 4 -> 12}
Output : 8

Input : List = {10 -> 20 -> 15 -> 2 -> 23 -> 90 -> 67}
Output : 90

 

The idea is to traverse the linked list and check if the current element is a peak element or not. If yes then return the current element else move forward in the list.
The current element will be a peak element if it is greater than its previous and next elements.
Below program illustrate the above approach: 
 

C++




// C++ implementation to find the peak
// element in the Linked List
#include <bits/stdc++.h>
using namespace std;
 
/* A Linked list node */
struct Node {
    int data;
    struct Node* next;
};
 
// function to insert a node at the
// beginning of the linked list
void push(struct Node** head_ref, int new_data)
{
    struct Node* new_node = new Node;
    new_node->data = new_data;
    new_node->next = (*head_ref);
    (*head_ref) = new_node;
}
 
// Function to find the peak element
int findPeak(struct Node* head)
{
    // Return -1 to indicate that
    // peak does not exist
    if (head == NULL)
        return -1;
 
    // If there is only one node
    if (head->next == NULL)
        return head->data;
 
    // Traverse till last node (starting from
    // second node)
    int prev = head->data;
    Node *curr;
    for (curr = head->next; curr->next != NULL;
         curr = curr->next) {
 
        // check if current node is greater
        // than both neighbours
        if (curr->data > curr->next->data
            && curr->data > prev)
            return curr->data;
 
        prev = curr->data;
    }
 
    // We reach here when curr is last node
    if (curr->data > prev)
        return curr->data;
 
    // Peak does not exists
    else
        return -1;
}
 
// Driver program
int main()
{
    struct Node* head = NULL;
 
    // create linked list 1->6->8->4->12
    push(&head, 12);
    push(&head, 4);
    push(&head, 8);
    push(&head, 6);
    push(&head, 1);
 
    cout << "Peak element is: "
         << findPeak(head);
 
    return 0;
}

Java




// Java implementation to find the peak
// element in the Linked List
class GFG
{
     
// A Linked list node /
static class Node
{
    int data;
    Node next;
};
 
// function to insert a node at the
// beginning of the linked list
static Node push( Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to find the peak element
static int findPeak( Node head)
{
    // Return -1 to indicate that
    // peak does not exist
    if (head == null)
        return -1;
 
    // If there is only one node
    if (head.next == null)
        return head.data;
 
    // Traverse till last node (starting from
    // second node)
    int prev = head.data;
    Node curr;
    for (curr = head.next; curr.next != null;
        curr = curr.next)
    {
 
        // check if current node is greater
        // than both neighbours
        if (curr.data > curr.next.data
            && curr.data > prev)
            return curr.data;
 
        prev = curr.data;
    }
 
    // We reach here when curr is last node
    if (curr.data > prev)
        return curr.data;
 
    // Peak does not exists
    else
        return -1;
}
 
// Driver program
public static void main(String args[])
{
    Node head = null;
 
    // create linked list 1.6.8.4.12
    head=push(head, 12);
    head=push(head, 4);
    head=push(head, 8);
    head=push(head, 6);
    head=push(head, 1);
 
    System.out.print("Peak element is: "
        + findPeak(head));
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python3 implementation to find the peak
# element in the Linked List
 
# Link list node
class Node :
    def __init__(self):
        self.data = 0
        self.next = None
 
# function to insert a node at the
# beginning of the linked list
def push( head_ref, new_data) :
 
    new_node = Node()
    new_node.data = new_data
    new_node.next = (head_ref)
    (head_ref) = new_node
    return head_ref
 
# Function to find the peak element
def findPeak( head):
 
    # Return -1 to indicate that
    # peak does not exist
    if (head == None) :
        return -1
 
    # If there is only one node
    if (head.next == None) :
        return head.data
 
    # Traverse till last node (starting from
    # second node)
    prev = head.data
    curr = head.next
    while( curr.next != None ):
     
        # check if current node is greater
        # than both neighbours
        if (curr.data > curr.next.data and curr.data > prev) :
            return curr.data
 
        prev = curr.data
        curr = curr.next
 
    # We reach here when curr is last node
    if (curr.data > prev) :
        return curr.data
 
    # Peak does not exists
    else:
        return -1
 
# Driver program
 
head = None
 
# create linked list 1.6.8.4.12
head = push(head, 12)
head = push(head, 4)
head = push(head, 8)
head = push(head, 6)
head = push(head, 1)
 
print("Peak element is: ", findPeak(head))
 
# This code is contributed by Arnab Kundu

C#




// C# implementation to find the peak
// element in the Linked List
using System;
 
class GFG
{
     
// A Linked list node /
public class Node
{
    public int data;
    public Node next;
};
 
// function to insert a node at the
// beginning of the linked list
static Node push(Node head_ref, int new_data)
{
    Node new_node = new Node();
    new_node.data = new_data;
    new_node.next = (head_ref);
    (head_ref) = new_node;
    return head_ref;
}
 
// Function to find the peak element
static int findPeak(Node head)
{
    // Return -1 to indicate that
    // peak does not exist
    if (head == null)
        return -1;
 
    // If there is only one node
    if (head.next == null)
        return head.data;
 
    // Traverse till last node
    // (starting from second node)
    int prev = head.data;
    Node curr;
    for (curr = head.next; curr.next != null;
         curr = curr.next)
    {
 
        // check if current node is greater
        // than both neighbours
        if (curr.data > curr.next.data
            && curr.data > prev)
            return curr.data;
 
        prev = curr.data;
    }
 
    // We reach here when curr is last node
    if (curr.data > prev)
        return curr.data;
 
    // Peak does not exists
    else
        return -1;
}
 
// Driver Code
public static void Main(String[] args)
{
    Node head = null;
 
    // create linked list 1.6.8.4.12
    head = push(head, 12);
    head = push(head, 4);
    head = push(head, 8);
    head = push(head, 6);
    head = push(head, 1);
 
    Console.Write("Peak element is: " +
                   findPeak(head));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
      // JavaScript implementation to find the peak
      // element in the Linked List
      // A Linked list node /
      class Node {
        constructor() {
          this.data = 0;
          this.next = null;
        }
      }
 
      // function to insert a node at the
      // beginning of the linked list
      function push(head_ref, new_data) {
        var new_node = new Node();
        new_node.data = new_data;
        new_node.next = head_ref;
        head_ref = new_node;
        return head_ref;
      }
 
      // Function to find the peak element
      function findPeak(head) {
        // Return -1 to indicate that
        // peak does not exist
        if (head == null) return -1;
 
        // If there is only one node
        if (head.next == null) return head.data;
 
        // Traverse till last node
        // (starting from second node)
        var prev = head.data;
        var curr;
        for (curr = head.next; curr.next != null; curr = curr.next)
        {
          // check if current node is greater
          // than both neighbours
          if (curr.data > curr.next.data && curr.data > prev)
          return curr.data;
 
          prev = curr.data;
        }
 
        // We reach here when curr is last node
        if (curr.data > prev) return curr.data;
        // Peak does not exists
        else return -1;
      }
 
      // Driver Code
      var head = null;
 
      // create linked list 1.6.8.4.12
      head = push(head, 12);
      head = push(head, 4);
      head = push(head, 8);
      head = push(head, 6);
      head = push(head, 1);
 
      document.write("Peak element is: " + findPeak(head));
       
</script>
Output: 
Peak element is: 8

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!