Skip to content
Related Articles

Related Articles

Improve Article
Find a pair (n,r) in an integer array such that value of nCr is maximum
  • Last Updated : 25 May, 2021

Given an array of non-negative integers arr[]. The task is to find a pair (n, r) such that value of nCr is maximum possible r < n
 

nCr = n! / (r! * (n – r)!) 

Examples: 
 

Input: arr[] = {5, 2, 3, 4, 1} 
Output: n = 5 and r = 2 
5C3 = 5! / (3! * (5 – 3)!) = 10
Input: arr[] = {0, 2, 3, 4, 1, 6, 8, 9} 
Output: n = 9 and r = 4 
 

 



Naive approach: A simple approach is to consider each (n, r) pair and find the aximum possible value of nCr.
Efficient approach: It is known from combinatorics: 
 

When n is odd: 
nC0 < nC1 ….. < nC(n-1)/2 = nC(n+1)/2 > ….. > nCn-1 > nCn
When n is even: 
nC0 < nC1 ….. < nCn/2 > ….. > nCn-1 > nCn
Also, nCr = nCn-r 
 

It can be observed that nCr will be maximum when n will be maximum and abs(r – middle) will be minimum. The problem now boils down to finding the largest element in arr[] and r such that abs(r – middle) is minimum.
Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to print the pair (n, r)
// such that nCr is maximum possible
void findPair(int arr[], int n)
{
    // Array should contain atleast 2 elements
    if (n < 2) {
        cout << "-1";
        return;
    }
 
    // Maximum element from the array
    int maximum = *max_element(arr, arr + n);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++) {
 
        // When n is even then middle is (maximum / 2)
        if (abs(middle - arr[i]) < temp && n % 2 == 0) {
            temp = abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (min(abs(middle - arr[i]), abs(middle + 1 - arr[i])) < temp
                 && n % 2 == 1) {
            temp = min(abs(middle - arr[i]), abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
 
    cout << "n = " << maximum
         << " and r = " << r;
}
 
// Driver code
int main()
{
    int arr[] = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    findPair(arr, n);
 
    return 0;
}

Java




// Java implementation of above approach
class GFG
{
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
static void findPair(int arr[], int n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
        System.out.print("-1");
        return;
    }
 
    // Maximum element from the array
    int maximum = arr[0];
    for(int i = 1; i < n; i++)
    maximum = Math.max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.min(Math.abs(middle - arr[i]),
                          Math.abs(middle + 1 - arr[i])) <
                                     temp && n % 2 == 1)
        {
            temp = Math.min(Math.abs(middle - arr[i]),
                            Math.abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    System.out.print( "n = " + maximum + " and r = " + r);
}
 
// Driver code
public static void main(String args[])
{
    int arr[] = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = arr.length;
 
    findPair(arr, n);
}
}
 
// This code is contributed by Arnab Kundu

Python3




# Python3 implementation of the approach
 
# Function to print the pair (n, r)
# such that nCr is maximum possible
 
 
def find_pair(arr):
 
    current_min_diff = float('inf')
    n = max(arr)
    middle = n / 2
 
    for elem in arr:
        diff = abs(elem - middle)
        if diff < current_min_diff:
            current_min_diff = diff
            r = elem
 
    print("n =", n, "and r =", r)
    return r
 
 
# Driver code
if __name__ == "__main__":
    arr = [0, 2, 3, 4, 1, 6, 8, 9]
    # arr = [3,2,1.5]
    find_pair(arr)
 
# This code is contributed by AnkitRai01

C#




// C# implementation of the approach
using System;
     
class GFG
{
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
static void findPair(int []arr, int n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
        Console.Write("-1");
        return;
    }
 
    // Maximum element from the array
    int maximum = arr[0];
    for(int i = 1; i < n; i++)
    maximum = Math.Max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    int temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (int i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.Abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.Abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.Min(Math.Abs(middle - arr[i]),
                          Math.Abs(middle + 1 - arr[i])) <
                                   temp && n % 2 == 1)
        {
            temp = Math.Min(Math.Abs(middle - arr[i]),
                            Math.Abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    Console.Write( "n = " + maximum +
                   " and r = " + r);
}
 
// Driver code
public static void Main(String []args)
{
    int []arr = { 0, 2, 3, 4, 1, 6, 8, 9 };
    int n = arr.Length;
 
    findPair(arr, n);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
 
// Java  scriptimplementation of above approach
 
     
// Function to print the pair (n, r)
// such that nCr is maximum possible
function findPair(arr,n)
{
    // Array should contain atleast 2 elements
    if (n < 2)
    {
       document.write("-1");
        return;
    }
 
    // Maximum element from the array
    let maximum = arr[0];
    for(let i = 1; i < n; i++)
    maximum = Math.max(maximum, arr[i]);
 
    // temp stores abs(middle - arr[i])
    let temp = 10000001, r = 0, middle = maximum / 2;
 
    // Finding r with minimum abs(middle - arr[i])
    for (let i = 0; i < n; i++)
    {
 
        // When n is even then middle is (maximum / 2)
        if (Math.abs(middle - arr[i]) < temp && n % 2 == 0)
        {
            temp = Math.abs(middle - arr[i]);
            r = arr[i];
        }
 
        // When n is odd then middle elements are
        // (maximum / 2) and ((maximum / 2) + 1)
        else if (Math.min(Math.abs(middle - arr[i]),
                          Math.abs(middle + 1 - arr[i])) <
                                     temp && n % 2 == 1)
        {
            temp = Math.min(Math.abs(middle - arr[i]),
                            Math.abs(middle + 1 - arr[i]));
            r = arr[i];
        }
    }
    document.write( "n = " + maximum + " and r = " + r);
}
 
// Driver code
 
    let arr = [0, 2, 3, 4, 1, 6, 8, 9 ];
    let n = arr.length;
 
    findPair(arr, n);
 
 
     
// This code is contributed by sravan kumar
</script>
Output: 
n = 9 and r = 4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :