# Find a number X such that (X XOR A) is minimum and the count of set bits in X and B are equal

Given two integers A and B, the task is to find an integer X such that (X XOR A) is minimum possible and the count of set bit in X is equal to the count of set bits in B.

Examples:

Input: A = 3, B = 5
Output: 3
Binary(A) = Binary(3) = 011
Binary(B) = Binary(5) = 101
The XOR will be minimum when M = 3
i.e. (3 XOR 3) = 0 and the number
of set bits in 3 is equal
to the number of set bits in 5.

Input: A = 7, B = 12
Output: 6

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Approach: It is known that the xor of an element with itself is 0. So, try to generate M’s binary representation as close to A as possible. Traverse from the most significant bit in A to the least significant bit and if a bit is set at the current position then it also needs to be set in the required number in order to minimize the XOR but the number of bits set has to be equal to the number of set bits in B. So, when the count of set bits in the required number has reached the count of set bits in B then the rest of the bits have to be 0.

Below is the implementation of the above approach:

 // C++ implementation of the approach #include using namespace std;    // Function to return the value x // such that (x XOR a) is minimum // and the number of set bits in x // is equal to the number // of set bits in b int minVal(int a, int b) {     // Count of set-bits in bit     int setBits = __builtin_popcount(b);     int ans = 0;        for (int i = 30; i >= 0; i--) {         int mask = 1 << i;         bool set = a & mask;            // If i'th bit is set also set the         // same bit in the required number         if (set && setBits > 0) {             ans |= (1 << i);                // Decrease the count of setbits             // in b as the count of set bits             // in the required number has to be             // equal to the count of set bits in b             setBits--;         }     }        return ans; }    // Driver code int main() {     int a = 3, b = 5;        cout << minVal(a, b);        return 0; }

 // Java implementation of the approach class GFG {      // Function to get no of set      // bits in binary representation      // of positive integer n      static int countSetBits(int n)      {          int count = 0;          while (n > 0)          {              count += n & 1;              n >>= 1;          }          return count;      }     // Function to return the value x // such that (x XOR a) is minimum // and the number of set bits in x // is equal to the number // of set bits in b static int minVal(int a, int b) {     // Count of set-bits in bit     int setBits = countSetBits(b);     int ans = 0;        for (int i = 30; i >= 0; i--)      {         int mask = 1 << i;                    // If i'th bit is set also set the         // same bit in the required number         if ((a & mask) > 0 && setBits > 0)          {             ans |= (1 << i);                            // Decrease the count of setbits             // in b as the count of set bits             // in the required number has to be             // equal to the count of set bits in b             setBits--;         }     }     return ans; }    // Driver Code  public static void main(String[] args)  {      int a = 3, b = 5;        System.out.println(minVal(a, b)); }  }    // This code is contributed by Rajput-Ji

 # Python3 implementation of the approach     # Function to return the value x  # such that (x XOR a) is minimum  # and the number of set bits in x  # is equal to the number  # of set bits in b  def minVal(a, b) :         # Count of set-bits in bit      setBits = bin(b).count('1');      ans = 0;         for i in range(30, -1, -1) :         mask = (1 << i);          s = (a & mask);             # If i'th bit is set also set the          # same bit in the required number          if (s and setBits > 0) :             ans |= (1 << i);                 # Decrease the count of setbits              # in b as the count of set bits              # in the required number has to be              # equal to the count of set bits in b              setBits -= 1;         return ans;     # Driver code  if __name__ == "__main__" :         a = 3; b = 5;         print(minVal(a, b));     # This code is contributed by kanugargng

 // C# implementation of the approach using System;     class GFG {      // Function to get no of set      // bits in binary representation      // of positive integer n      static int countSetBits(int n)      {          int count = 0;          while (n > 0)          {              count += n & 1;              n >>= 1;          }          return count;      }     // Function to return the value x // such that (x XOR a) is minimum // and the number of set bits in x // is equal to the number // of set bits in b static int minVal(int a, int b) {     // Count of set-bits in bit     int setBits = countSetBits(b);     int ans = 0;        for (int i = 30; i >= 0; i--)      {         int mask = 1 << i;                    // If i'th bit is set also set the         // same bit in the required number         if ((a & mask) > 0 && setBits > 0)          {                            ans |= (1 << i);                            // Decrease the count of setbits             // in b as the count of set bits             // in the required number has to be             // equal to the count of set bits in b             setBits--;         }     }        return ans; }    // Driver Code  public static void Main()  {      int a = 3, b = 5;        Console.Write(minVal(a, b)); }  }     // This code is contributed by Mohit kumar 29

Output:
3

Time Complexity: O(log(N))

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Article Tags :
Practice Tags :