Skip to content
Related Articles

Related Articles

Improve Article

Find a N-digit number such that it is not divisible by any of its digits

  • Last Updated : 08 Jun, 2021
Geek Week

Given an integer N, the task is to find any N-digit positive number (except for zeros) such that it is not divisible by any of its digits. If it is not possible to find any such number then print -1.
Note: There can be more than one such number for the same N-digit.
Examples: 
 

Input: N = 2  
Output: 23
23 is not divisible by 2 or 3

Input: N = 3
Output: 239

 

Approach: 
The easiest solution to this problem can be thought of with the help of digits ‘4’ and ‘5’. 
 

  1. Since, in order for a number to be divisible by 5, the number must end with 0 or 5; and in order for it to be divisible by 4, the last two digits if the number must be divisible by 4.
  2. Therefore, a shortcut method can be applied to prevent both of the divisibility criteria of 4 and as well as of 5, as: 
    • To prevent a number from being divisible by 5, the number can contain 5 for every other digit except for last digit. 
       
Therefore for N digit number,
(N - 1) digits must be 5 = 5555...(N-1 times)d
where d is the Nth digit
  •  
  • To prevent a number from being divisible by 4, the number can contain 5 at the second last digit and 4 at the last digit. 
     
Therefore for N digit number,
Last digit must be 4 = 5555...(N-1 times)4

Below is the implementation of the above approach: 
 

CPP




// CPP program to find N digit number such
// that it is not divisible by any of its digits
 
#include <bits/stdc++.h>
using namespace std;
 
// Function that print the answer
void findTheNumber(int n)
{
    // if n == 1 then it is
    // not possible
    if (n == 1) {
        cout << "Impossible" << endl;
        return;
    }
 
    // loop to n-1 times
    for (int i = 0; i < n - 1; i++) {
        cout << "5";
    }
 
    // print 4 as last digit of
    // the number
    cout << "4";
}
 
// Driver code
int main()
{
    int n = 12;
 
    // Function call
    findTheNumber(n);
 
    return 0;
}

Java




// JAVA program to find N digit number such
// that it is not divisible by any of its digits
class GFG{
  
// Function that print the answer
static void findTheNumber(int n)
{
    // if n == 1 then it is
    // not possible
    if (n == 1) {
        System.out.print("Impossible" +"\n");
        return;
    }
  
    // loop to n-1 times
    for (int i = 0; i < n - 1; i++) {
        System.out.print("5");
    }
  
    // print 4 as last digit of
    // the number
    System.out.print("4");
}
  
// Driver code
public static void main(String[] args)
{
    int n = 12;
  
    // Function call
    findTheNumber(n);
  
}
}
 
// This code is contributed by 29AjayKumar

Python3




# Python3 program to find N digit number such
# that it is not divisible by any of its digits
  
# Function that prthe answer
def findTheNumber(n):
    # if n == 1 then it is
    # not possible
    if (n == 1):
        print("Impossible")
        return
  
    # loop to n-1 times
    for i in range(n-1):
        print("5",end="")
  
    # print as last digit of
    # the number
    print("4")
  
# Driver code
if __name__ == '__main__':
    n = 12
  
    #Function call
    findTheNumber(n)
 
# This code is contributed by mohit kumar 29

C#




// C# program to find N digit number such
// that it is not divisible by any of its digits
using System;
 
class GFG{
 
// Function that print the answer
static void findTheNumber(int n)
{
    // if n == 1 then it is
    // not possible
    if (n == 1) {
        Console.Write("Impossible" +"\n");
        return;
    }
 
    // loop to n-1 times
    for (int i = 0; i < n - 1; i++) {
        Console.Write("5");
    }
 
    // print 4 as last digit of
    // the number
    Console.Write("4");
}
 
// Driver code
public static void Main(String[] args)
{
    int n = 12;
 
    // Function call
    findTheNumber(n);
}
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript program to find N digit number such
// that it is not divisible by any of its digits
 
// Function that print the answer
function findTheNumber(n)
{
    // if n == 1 then it is
    // not possible
    if (n == 1) {
        document.write( "Impossible" );
        return;
    }
 
    // loop to n-1 times
    for (var i = 0; i < n - 1; i++) {
        document.write( "5");
    }
 
    // print 4 as last digit of
    // the number
    document.write( "4");
}
 
// Driver code
var n = 12;
// Function call
findTheNumber(n);
 
// This code is contributed by rutvik_56.
</script>
Output: 



555555555554

 

Time complexity: 0(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :