Skip to content
Related Articles

Related Articles

Improve Article
Fill empty column – Pandas
  • Last Updated : 25 Feb, 2021

Sometimes the dataframe contains an empty column and may pose a real problem in the real life scenario. Missing Data can also refer to as NA(Not Available) values in pandas. In DataFrame sometimes many datasets simply arrive with missing data, either because it exists and was not collected or it never existed. In this article, let’s see how to fill empty columns in dataframe using pandas.

Note: Link of csv file here.

Fill empty column:

Python3




import pandas as pd
df = pd.read_csv("Persons.csv")
df

First, we import pandas after that we load our CSV file in the df variable. Just try to run this in jupyter notebook or colab.



Output:

Python3




df.set_index('Name ', inplace=True)
df

This line used to remove index value, we don’t want that, so we remove it.

Output:

There are several methods used to fill the empty columns.we going to saw it one by one

Method 1:



In this method, we will use “df.fillna(0)” which replace all NaN elements with 0s.

Example:

Python3




df1 = df.fillna(0)
df1

Output:

Method 2:

In this method, we will use “df.fillna(method=’ffill’)” , which is used to propagate non-null values forward or backward.

Syntax: DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None)
 

Python3




df2 = df.fillna(method='ffill')
df2

Output:



Method 3:

In this method we will use “df.interpolate()” 

Syntax: DataFrame.interpolate(method=’linear’, axis=0, limit=None, inplace=False, limit_direction=None, limit_area=None, downcast=None, **kwargs)

Python3




df3 = df.interpolate()
df3

Output:

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :