Fibonacci number in an array

We have been given an array and our task is to check if the element of array is present in Fibonacci series or not. If yes, then print that element.

Examples:

Input : 4, 2, 8, 5, 20, 1, 40, 13, 23
Output : 2 8 5 1 13
Here, Fibonacci series will be 0, 1, 1, 2, 
3, 5, 8, 13, 21, 34, 55. Numbers that are present 
in array are 2, 8, 5, 1, 13
For 2 -> 5 * 2 * 2  - 4 = 36
36 is a perfect square root of 6.

Input : 4, 7, 6, 25
Output : No Fibonacci number in this array

A number is said to be in Fibonacci series if either (5 * n * n – 4) or (5 * n * n + 4) is a perfect square. Please refer check if a given number is Fibonacci number for details.

C/C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// CPP program to find Fibonacci series numbers
// in a given array.
#include <bits/stdc++.h>
using namespace std;
  
// Function to check number is a
// perfect square or not
bool isPerfectSquare(int num)
{
    int n = sqrt(num);
    return (n * n == num);
}
  
// Function to check if the number
// is in Fibonacci or not
void checkFib(int array[], int n)
{
    int count = 0;
    for (int i = 0; i < n; i++) {
        if (isPerfectSquare(5 * array[i] * array[i] + 4) || isPerfectSquare(5 * array[i] * array[i] - 4)) {
            cout << array[i] << " ";
            count++;
        }
    }
    if (count == 0)
        cout << "None present" << endl;
}
  
// Driver function
int main()
{
    int array[] = { 4, 2, 8, 5, 20, 1, 40, 13, 23 };
    int n = sizeof(array) / sizeof(array[0]);
  
    checkFib(array, n);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to find Fibonacci series numbers
// in a given array
import java.io.*;
import java.math.*;
  
class GFG {
    // Function to check number is a
    // perfect square or not
    static boolean isPerfectSquare(int num)
    {
        int n = (int)(Math.sqrt(num));
        return (n * n == num);
    }
  
    // Function to check if the number
    // is in Fibonacci or not
    static void checkFib(int array[], int n)
    {
        int count = 0;
        for (int i = 0; i < n; i++) {
            if (isPerfectSquare(5 * array[i] * array[i] + 4) || isPerfectSquare(5 * array[i] * array[i] - 4)) {
                System.out.print(array[i] + " ");
                count++;
            }
        }
        if (count == 0)
            System.out.println("None Present");
    }
  
    // driver program
    public static void main(String[] args)
    {
        int array[] = { 4, 2, 8, 5, 20, 1, 40, 13, 23 };
        int n = array.length;
        checkFib(array, n);
    }
}
  
// Contributed by Pramod Kumar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to find
# Fibonacci series numbers
# in a given array.
  
import math
  
def isPerfectSquare(num):
  
    n = int(math.sqrt(num))
    return (n * n == num)
  
   
# Function to check if the number
# is in Fibonacci or not
def checkFib(array, n):
  
    count = 0
    for i in range(n):
      
        if (isPerfectSquare(5 * array[i] * array[i] + 4) or 
            isPerfectSquare(5 * array[i] * array[i] - 4)):
          
            print(array[i], " ", end ="");
            count = count + 1
          
      
    if (count == 0):
        print("None present");
  
  
# driver code
array = [4, 2, 8, 5, 20, 1, 40, 13, 23]
n = len(array)
   
checkFib(array, n)
   
# This code is contributed
# by Anant Agarwal.

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to find Fibonacci series
// numbers in a given array
using System;
  
class GFG {
      
    // Function to check number is a
    // perfect square or not
    static bool isPerfectSquare(int num)
    {
        int n = (int)(Math.Sqrt(num));
        return (n * n == num);
    }
  
    // Function to check if the number
    // is in Fibonacci or not
    static void checkFib(int[] array, int n)
    {
        int count = 0;
        for (int i = 0; i < n; i++) {
            if (isPerfectSquare(5 * array[i] * array[i] + 4) ||
                isPerfectSquare(5 * array[i] * array[i] - 4)) 
            {
                Console.Write(array[i] + " ");
                count++;
            }
        }
        if (count == 0)
            Console.WriteLine("None Present");
    }
  
    // driver program
    public static void Main()
    {
        int[] array = { 4, 2, 8, 5, 20, 1, 40, 13, 23 };
        int n = array.Length;
        checkFib(array, n);
    }
}
  
// This code is contributed by Sam007

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to find 
// Fibonacci series numbers
// in a given array.
  
// Function to check 
// number is a perfect
// square or not
function isPerfectSquare($num)
{
    $n = (int)(sqrt($num));
    return ($n * $n == $num);
}
  
// Function to check 
// if the number is 
// in Fibonacci or not
function checkFib($array, $n)
{
    $count = 0;
    for ($i = 0; $i < $n; $i++) 
    {
        if (isPerfectSquare(5 * $array[$i] * 
                                $array[$i] + 4) || 
            isPerfectSquare(5 * $array[$i] * 
                                $array[$i] - 4)) 
        {
            echo $array[$i]." ";
            $count++;
        }
    }
    if ($count == 0)
        echo "None present\n";
}
  
// Driver Code
$array = array(4, 2, 8, 5, 20, 
                1, 40, 13, 23);
$n = sizeof($array);
  
checkFib($array, $n);
  
// This code is contributed by mits.
  
?>

chevron_right



Output:

2 8 5 1 13

This article is contributed by Rishabh Jain. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up

Improved By : Sam007, Mithun Kumar