Skip to content
Related Articles

Related Articles

Improve Article

Fibonacci Cube Graph

  • Difficulty Level : Easy
  • Last Updated : 30 Apr, 2021

You are given input as order of graph n (highest number of edges connected to a node), you have to find the number of vertices in a Fibonacci cube graph of order n.
Examples : 
 

Input : n = 3
Output : 5
Explanation : 
Fib(n + 2) = Fib(5) = 5

Input : n = 2
Output : 3

 

A Fibonacci Cube Graph is similar to hypercube graph, but with a fibonacci number of vertices. In fibonacci cube graph only 1 vertex has degree n rest all has degree less than n. 
Fibonacci cube graph of order n has F(n + 2) vertices, where F(n) is a n-th fibonacci number
Fibonacii series : 1, 1, 2, 3, 5, 8, 13, 21, 34……………….
 

For input n as order of graph, find the corresponding fibonacci number at the position n + 2. 
where F(n) = F(n – 1) + F(n – 2)
Approach : Find the (n + 2)-th fibonacci number.
Below is the implementation of above approach : 
 



C++




// CPP code to find vertices in a fibonacci
// cube graph of order n
#include<iostream>
using namespace std;
 
// function to find fibonacci number
int fib(int n)
{
    if (n <= 1)
        return n;
    return fib(n - 1) + fib(n - 2);
}
 
// function for finding number of vertices
// in fibonacci cube graph
int findVertices (int n)
{
    // return fibonacci number for f(n + 2)
    return fib(n + 2);
}
 
// driver program
int main()
{
    // n is the order of the graph
    int n = 3;
    cout << findVertices(n);
    return 0;
}

Java




// java code to find vertices in a fibonacci
// cube graph of order n
public class GFG {
     
    // function to find fibonacci number
    static int fib(int n)
    {
        if (n <= 1)
            return n;
        return fib(n - 1) + fib(n - 2);
    }
     
    // function for finding number of vertices
    // in fibonacci cube graph
    static int findVertices (int n)
    {
        // return fibonacci number for f(n + 2)
        return fib(n + 2);
    }
         
    public static void main(String args[]) {
         
        // n is the order of the graph
        int n = 3;
        System.out.println(findVertices(n));
    }
}
 
// This code is contributed by Sam007

Python3




# Python3 code to find vertices in
# a fibonacci cube graph of order n
 
# Function to find fibonacci number
def fib(n):
 
    if n <= 1:
        return n
         
    return fib(n - 1) + fib(n - 2)
 
# Function for finding number of
# vertices in fibonacci cube graph
def findVertices(n):
 
    # return fibonacci number
    # for f(n + 2)
    return fib(n + 2)
 
# Driver Code
if __name__ == "__main__":
 
    # n is the order of the graph
    n = 3
    print(findVertices(n))
 
# This code is contributed
# by Rituraj Jain

C#




// C# code to find vertices in a fibonacci
// cube graph of order n
using System;
 
class GFG {
     
    // function to find fibonacci number
    static int fib(int n)
    {
        if (n <= 1)
            return n;
        return fib(n - 1) + fib(n - 2);
    }
     
    // function for finding number of
    // vertices in fibonacci cube graph
    static int findVertices (int n)
    {
         
        // return fibonacci number for
        // f(n + 2)
        return fib(n + 2);
    }
     
    // Driver code
    static void Main()
    {
         
        // n is the order of the graph
        int n = 3;
         
        Console.Write(findVertices(n));
    }
}
 
// This code is contributed by Sam007

PHP




<?php
// PHP code to find vertices in a
// fibonacci cube graph of order n
 
// function to find fibonacci number
function fib($n)
{
    if ($n <= 1)
        return $n;
    return fib($n - 1) + fib($n - 2);
}
 
// function for finding number of 
// vertices in fibonacci cube graph
function findVertices ($n)
{
    // return fibonacci number
    // for f(n + 2)
    return fib($n + 2);
}
 
// Driver Code
 
// n is the order of the graph
$n = 3;
echo findVertices($n);    
 
// This code is contributed by Sam007
?>

Javascript




<script>
 
 
// Javascript code to find vertices in a fibonacci
// cube graph of order n
 
// function to find fibonacci number
function fib(n)
{
    if (n <= 1)
        return n;
    return fib(n - 1) + fib(n - 2);
}
 
// function for finding number of vertices
// in fibonacci cube graph
function findVertices (n)
{
    // return fibonacci number for f(n + 2)
    return fib(n + 2);
}
 
// driver program
// n is the order of the graph
var n = 3;
document.write( findVertices(n));
 
</script>
Output : 
5

 

Note that the above code can be optimized to work in O(Log n) using efficient implementations discussed in Program for Fibonacci numbers
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :