Related Articles

Related Articles

Fermat’s Factorization method for large numbers
  • Last Updated : 17 Apr, 2020

Given a large number N, the task is to divide this number into a product of two factors, using Fermat’s Factorisation method.


Input: N = 105327569
Output: 10223, 10303

Input: N = 249803
Output: 23, 10861

Fermat Factorization: Fermat’s Factorization method is based on the representation of an odd integer as the difference of two squares.
For an integer N, we want a and b such as:

N = a2 - b2 = (a+b)(a-b) 

where (a+b) and (a-b) are 
the factors of the number N.


  1. Get the number as an object of BigInteger class
  2. Find the square root of N.
  3. It is guaranteed that the value of a is greater than sqrt(N) and value of b less than sqrt(N).
  4. Take the value of sqrt(n) as a and increment the number until and unless a number b is found such that N – a^2 is a perfect square.

Below is the implementation of the above approach:





// Java program for Fermat's Factorization
// method for large numbers
import java.math.*;
import java.util.*;
class Solution {
    // Function to find the Floor
    // of square root of a number
    public static BigInteger sqrtF(BigInteger x)
        throws IllegalArgumentException
        // if x is less than 0
        if (x.compareTo(BigInteger.ZERO) < 0) {
            throw new IllegalArgumentException(
                "Negative argument.");
        // if x==0 or x==1
        if (x.equals(BigInteger.ZERO)
            || x.equals(BigInteger.ONE)) {
            return x;
        BigInteger two
            = BigInteger.valueOf(2L);
        BigInteger y;
        // run a loop
        y = x.divide(two);
        while (y.compareTo(x.divide(y)) > 0)
            y = ((x.divide(y)).add(y))
        return y;
    // function to find the Ceil
    // of square root of a number
    public static BigInteger sqrtC(BigInteger x)
        throws IllegalArgumentException
        BigInteger y = sqrtF(x);
        if (x.compareTo(y.multiply(y)) == 0) {
            return y;
        else {
            return y.add(BigInteger.ONE);
    // Fermat factorisation
    static String FermatFactors(BigInteger n)
        // constants
        BigInteger ONE = new BigInteger("1");
        BigInteger ZERO = new BigInteger("0");
        BigInteger TWO = new BigInteger("2");
        // if n%2 ==0 then return the factors
        if (n.mod(TWO).equals(ZERO)) {
            return n.divide(TWO)
                + ", 2";
        // find the square root
        BigInteger a = sqrtC(n);
        // if the number is a perfect square
        if (a.multiply(a).equals(n)) {
            return a.toString()
                + ", " + a.toString();
        // else perform factorisation
        BigInteger b;
        while (true) {
            BigInteger b1 = a.multiply(a)
            b = sqrtF(b1);
            if (b.multiply(b).equals(b1))
                a = a.add(ONE);
        return a.subtract(b).toString()
            + ", " + a.add(b).toString();
    // Driver code
    public static void main(String args[])
        String N = "105327569";
                new BigInteger(N)));



10223, 10303

Performance Analysis:

  • Time Complexity: O(sqrt(N))
  • Space Complexity: O(1)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :