Skip to content
Related Articles

Related Articles

Farthest cell from a given cell in a Matrix
  • Last Updated : 03 Feb, 2021

Given the integers N, M, R and C where N and M denotes the number of rows and columns in a matrix and (R, C) denotes a cell in that matrix, the task is to find the distance of the farthest cell from the cell (R, C)
Note: The matrix can only be traversed either horizontally or vertically at a time.

Examples:

Input: N = 15, M = 12, R = 1, C = 6
Output: 20
Explanation: The maximum distance calculated from all the four corners are 20, 5, 19, 6. Therefore, 20 is the required answer.

Input: N = 15, M = 12, R = 2, C = 4
Output: 21

 

Naive Approach: The simplest approach is to traverse the matrix and calculate the distance of each cell of the matrix from the given cell (R, C) and maintain the maximum of all distances. 

Time Complexity: O(N * M)
Auxiliary Space: O(1)

Efficient Approach: To optimize the above the approach, the observation is that the farthest distant cell from any cell in a matrix will be one of the four corner-most cells i.e. (1, 1), (1, M), (N, 1), (N, M).



Follow the steps below to solve the problem:

  • Initialize d1, d2, d3 and d4 be equal to N + M – R – C, R + C – 2, N – R + C – 1 and M – C + R – 1 respectively.
  • Print the maximum among d1, d2, d3 and d4.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program for the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the farthest
// cell distance from the given cell
void farthestCellDistance(int N, int M,
                          int R, int C)
{
    // Distance from all the
    // cornermost cells
 
    // From cell(N, M)
    int d1 = N + M - R - C;
 
    // From Cell(1, 1)
    int d2 = R + C - 2;
 
    // From cell(N, 1)
    int d3 = N - R + C - 1;
 
    // From cell(1, M)
    int d4 = M - C + R - 1;
 
    // Finding out maximum
    int maxDistance = max(d1,
                          max(d2,
                              max(d3, d4)));
 
    // Print the answer
    cout << maxDistance;
}
 
// Driver Code
int main()
{
    int N = 15, M = 12, R = 1, C = 6;
    farthestCellDistance(N, M, R, C);
 
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program for the above approach
import java.io.*;
 
class GFG{
 
// Function to find the farthest
// cell distance from the given cell
static void farthestCellDistance(int N, int M,
                                 int R, int C)
{
     
    // Distance from all the
    // cornermost cells
 
    // From cell(N, M)
    int d1 = N + M - R - C;
 
    // From Cell(1, 1)
    int d2 = R + C - 2;
 
    // From cell(N, 1)
    int d3 = N - R + C - 1;
 
    // From cell(1, M)
    int d4 = M - C + R - 1;
 
    // Finding out maximum
    int maxDistance = Math.max(d1, Math.max(
                  d2, Math.max(d3, d4)));
 
    // Print the answer
    System.out.println(maxDistance);
}
 
// Driver Code
public static void main(String[] args)
{
    int N = 15, M = 12, R = 1, C = 6;
     
    farthestCellDistance(N, M, R, C);
}
}
 
// This code is contributed by Dharanendra L V

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program for the above approach
 
# Function to find the farthest
# cell distance from the given cell
def farthestCellDistance(N, M, R, C):
   
    # Distance from all the
    # cornermost cells
 
    # From cell(N, M)
    d1 = N + M - R - C;
 
    # From Cell(1, 1)
    d2 = R + C - 2;
 
    # From cell(N, 1)
    d3 = N - R + C - 1;
 
    # From cell(1, M)
    d4 = M - C + R - 1;
 
    # Finding out maximum
    maxDistance = max(d1, max(d2, max(d3, d4)));
 
    # Prthe answer
    print(maxDistance);
 
# Driver Code
if __name__ == '__main__':
    N = 15;
    M = 12;
    R = 1;
    C = 6;
 
    farthestCellDistance(N, M, R, C);
 
# This code is contributed by shikhasingrajput

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program for the above approach
using System;
 
class GFG{
 
// Function to find the farthest
// cell distance from the given cell
static void farthestCellDistance(int N, int M,
                                 int R, int C)
{
     
    // Distance from all the
    // cornermost cells
 
    // From cell(N, M)
    int d1 = N + M - R - C;
 
    // From Cell(1, 1)
    int d2 = R + C - 2;
 
    // From cell(N, 1)
    int d3 = N - R + C - 1;
 
    // From cell(1, M)
    int d4 = M - C + R - 1;
 
    // Finding out maximum
    int maxDistance = Math.Max(d1, Math.Max(
                  d2, Math.Max(d3, d4)));
 
    // Print the answer
    Console.WriteLine(maxDistance);
}
 
// Driver Code
static public void Main()
{
    int N = 15, M = 12, R = 1, C = 6;
     
    farthestCellDistance(N, M, R, C);
}
}
 
// This code is contributed by Dharanendra L V

chevron_right


Output: 

20

 

Time Complexity: O(1)
Auxiliary Space: O(1)

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :