# Extended Knapsack Problem

• Difficulty Level : Medium
• Last Updated : 22 Jun, 2022

Given N items, each item having a given weight Ci and a profit value Pi, the task is to maximize the profit by selecting a maximum of K items adding up to a maximum weight W.

Examples:

Input: N = 5, P[] = {2, 7, 1, 5, 3}, C[] = {2, 5, 2, 3, 4}, W = 8, K = 2.
Output: 12
Explanation:
Here, the maximum possible profit is when we take 2 items: item2 (P = 7 and C = 5) and item4 (P = 5 and C = 3).
Hence, maximum profit = 7 + 5 = 12
Input: N = 5, P[] = {2, 7, 1, 5, 3}, C[] = {2, 5, 2, 3, 4}, W = 1, K = 2
Output:
Explanation: All weights are greater than 1. Hence, no item can be picked.

Approach: The dynamic programming approach is preferred over the general recursion approach. Let us first verify that the conditions of DP are still satisfied.

1. Overlapping sub-problems: When the recursive solution is tried, 1 item is added first and the solution set is (1), (2), …(n). In the second iteration we have (1, 2) and so on where (1) and (2) are recalculated. Hence there will be overlapping solutions.
2. Optimal substructure: Overall, each item has only two choices, either it can be included in the solution or denied. For a particular subset of z elements, the solution for (z+1)th element can either have a solution corresponding to the z elements or the (z+1)th element can be added if it doesn’t exceed the knapsack constraints. Either way, the optimal substructure property is satisfied.

Let’s derive the recurrence. Let us consider a 3-dimensional table dp[N][W][K], where N is the number of elements, W is the maximum weight capacity and K is the maximum number of items allowed in the knapsack. Let’s define a state dp[i][j][k] where i denotes that we are considering the ith element, j denotes the current weight filled, and k denotes the number of items filled until now.
For every state dp[i][j][k], the profit is either that of the previous state (when the current state is not included) or the profit of the current item added to that of the previous state (when the current item is selected). Hence, the recurrence relation is:

dp[i][j][k] = max( dp[i-1][j][k], dp[i-1][j-W[i-1]][k-1] + P[i])

Below is the implementation of the above approach:

## C++

 `// C++ code for the extended``// Knapsack Approach``#include ``using` `namespace` `std;` `// To store the dp values``vector > > dp;` `int` `maxProfit(``int` `profit[], ``int` `weight[], ``int` `n, ``int` `max_W,``              ``int` `max_E)``{` `    ``// for each element given``    ``for` `(``int` `i = 1; i <= n; i++) {` `        ``// For each possible``        ``// weight value``        ``for` `(``int` `j = 1; j <= max_W; j++) {` `            ``// For each case where``            ``// the total elements are``            ``// less than the constraint``            ``for` `(``int` `k = 1; k <= max_E; k++) {` `                ``// To ensure that we dont``                ``// go out of the array``                ``if` `(j >= weight[i - 1]) {` `                    ``dp[i][j][k] = max(``                        ``dp[i - 1][j][k],``                        ``dp[i - 1][j - weight[i - 1]][k - 1]``                            ``+ profit[i - 1]);``                ``}``                ``else` `{``                    ``dp[i][j][k] = dp[i - 1][j][k];``                ``}``            ``}``        ``}``    ``}` `    ``return` `dp[n][max_W][max_E];``}` `// Driver Code``int` `main()``{``    ``int` `n = 5;``    ``int` `profit[] = { 2, 7, 1, 5, 3 };``    ``int` `weight[] = { 2, 5, 2, 3, 4 };``    ``int` `max_weight = 8;``    ``int` `max_element = 2;` `    ``dp = vector > >(``        ``n + 1, vector >(``                   ``max_weight + 1,``                   ``vector<``int``>(max_element + 1, 0)));``    ``cout << maxProfit(profit, weight, n, max_weight,``                      ``max_element)``         ``<< ``"\n"``;` `    ``return` `0;``}`

## Java

 `// Java code for the extended``// Knapsack Approach``import` `java.util.*;``import` `java.lang.*;``import` `java.io.*;` `class` `GFG{` `// To store the dp values``static` `int``[][][] dp = ``new` `int``[``100``][``100``][``100``];` `static` `int` `maxProfit(``int` `profit[],``                     ``int` `weight[],``                     ``int` `n, ``int` `max_W,``                     ``int` `max_E)``{``    ` `    ``// for each element given``    ``for``(``int` `i = ``1``; i <= n; i++)``    ``{``        ` `        ``// For each possible``        ``// weight value``        ``for``(``int` `j = ``1``; j <= max_W; j++)``        ``{``            ` `            ``// For each case where``            ``// the total elements are``            ``// less than the constraint``            ``for``(``int` `k = ``1``; k <= max_E; k++)``            ``{``                ` `                ``// To ensure that we dont``                ``// go out of the array``                ``if` `(j >= weight[i - ``1``])``                ``{``                    ``dp[i][j][k] = Math.max(dp[i - ``1``][j][k],``                                           ``dp[i - ``1``][j -``                                       ``weight[i - ``1``]][k - ``1``] +``                                       ``profit[i - ``1``]);``                ``}``                ``else``                ``{``                    ``dp[i][j][k] = dp[i - ``1``][j][k];``                ``}``            ``}``        ``}``    ``}` `    ``return` `dp[n][max_W][max_E];``}``  ` `// Driver code``public` `static` `void` `main(String[] args)``{``    ``int` `n = ``5``;``    ``int` `profit[] = { ``2``, ``7``, ``1``, ``5``, ``3` `};``    ``int` `weight[] = { ``2``, ``5``, ``2``, ``3``, ``4` `};``    ``int` `max_weight = ``8``;``    ``int` `max_element = ``2``;``    ` `    ``System.out.println(maxProfit(profit,``                                 ``weight, n,``                                 ``max_weight,``                                 ``max_element));  ``}``}` `// This code is contributed by offbeat`

## Python3

 `# Python3 code for the extended``# Knapsack Approach` `# To store the dp values``dp``=``[]` `def` `maxProfit(profit, weight, n, max_W,``              ``max_E):` `    ``# for each element given``    ``for` `i ``in` `range``(``1``,n``+``1``) :` `        ``# For each possible``        ``# weight value``        ``for` `j ``in` `range``(``1``,max_W``+``1``) :` `            ``# For each case where``            ``# the total elements are``            ``# less than the constra``            ``for` `k ``in` `range``(``1``, max_E``+``1``) :` `                ``# To ensure that we dont``                ``# go out of the array``                ``if` `(j >``=` `weight[i ``-` `1``]) :` `                    ``dp[i][j][k] ``=` `max``(``                        ``dp[i ``-` `1``][j][k],``                        ``dp[i ``-` `1``][j ``-` `weight[i ``-` `1``]][k ``-` `1``]``                            ``+` `profit[i ``-` `1``])``                ` `                ``else` `:``                    ``dp[i][j][k] ``=` `dp[i ``-` `1``][j][k]``                ` `            ` `        ` `    `  `    ``return` `dp[n][max_W][max_E]`  `# Driver Code``if` `__name__ ``=``=` `'__main__'``:``    ``n ``=` `5``    ``profit ``=` `[``2``, ``7``, ``1``, ``5``, ``3` `]``    ``weight ``=` `[ ``2``, ``5``, ``2``, ``3``, ``4` `]``    ``max_weight ``=` `8``    ``max_element ``=` `2` `    ``dp ``=` `[[[``0` `for` `j ``in` `range``(max_element ``+` `1``)]``for` `i ``in` `range``(max_weight ``+` `1``)] ``for` `k ``in` `range``(n``+``1``)]``    ``print``(maxProfit(profit, weight, n, max_weight,``                      ``max_element))`

## C#

 `// C# program to implement above approach``using` `System;``using` `System.Collections;``using` `System.Collections.Generic;` `class` `GFG``{` `  ``// To store the dp values``  ``static` `int``[][][] dp = ``new` `int``[][];` `  ``static` `int` `maxProfit(``int``[] profit, ``int``[] weight,``                       ``int` `n, ``int` `max_W, ``int` `max_E)``  ``{` `    ``// for each element given``    ``for``(``int` `i = 1 ; i <= n ; i++)``    ``{` `      ``// For each possible``      ``// weight value``      ``for``(``int` `j = 1 ; j <= max_W ; j++)``      ``{` `        ``// For each case where``        ``// the total elements are``        ``// less than the constraint``        ``for``(``int` `k = 1 ; k <= max_E ; k++)``        ``{` `          ``// To ensure that we dont``          ``// go out of the array``          ``if` `(j >= weight[i - 1])``          ``{``            ``dp[i][j][k] = Math.Max(dp[i - 1][j][k],``                                   ``dp[i - 1][j - weight[i - 1]][k - 1] + profit[i - 1]);``          ``}``          ``else``          ``{``            ``dp[i][j][k] = dp[i - 1][j][k];``          ``}``        ``}``      ``}``    ``}` `    ``return` `dp[n][max_W][max_E];``  ``}` `  ``// Driver code``  ``public` `static` `void` `Main(``string``[] args){` `    ``int` `n = 5;``    ``int``[] profit = ``new` `int``[]{ 2, 7, 1, 5, 3 };``    ``int``[] weight = ``new` `int``[]{ 2, 5, 2, 3, 4 };``    ``int` `max_weight = 8;``    ``int` `max_element = 2;` `    ``// Initialize dp``    ``for``(``int` `i = 0 ; i < 100 ; i++){``      ``dp[i] = ``new` `int``[];``      ``for``(``int` `j = 0 ; j < 100 ; j++){``        ``dp[i][j] = ``new` `int``;``      ``}``    ``}` `    ``Console.WriteLine(maxProfit(profit, weight, n,``                                ``max_weight, max_element));` `  ``}``}` `// This code is contributed by subhamgoyal2014.`

## Javascript

 ``

Output:

`12`

Time Complexity: O(N * W * K)
Auxiliary Space: O(N * W * K)

My Personal Notes arrow_drop_up