Exponential Distribution in R Programming – dexp(), pexp(), qexp(), and rexp() Functions
The exponential distribution in R Language is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution.
In R, there are 4 built-in functions to generate exponential distribution:
- dexp()
dexp(x_dexp, rate)
- pexp()
pexp(x_pexp, rate )
- qexp()
qexp(x_qexp, rate)
- rexp()
rexp(N, rate )
where,
x: represents x-values for exp function .
rate: represents the shapex.
N: Specify sample size
Functions To Generate Exponential Distribution
dexp() Function
dexp()
function returns the corresponding values of the exponential density for an input vector of quantiles.
Syntax:
dexp(x_dexp, rate)
Example:
# R program to illustrate # exponential distribution # Specify x-values x_dexp < - seq( 1 , 10 , by = 0.1 ) # Apply dexp() function y_dexp < - dexp(x_dexp, rate = 5 ) # Plot dexp values plot(y_dexp) |
Output:
pexp() Function
pexp()
function returns the corresponding values of the exponential cumulative distribution function for an input vector of quantiles.
Syntax:
pexp(x_pexp, rate )
Example:
# R program to illustrate # exponential distribution # Specify x-values x_pexp < - seq( 1 , 10 , by = 0.2 ) # Apply pexp() function y_pexp < - pexp(x_pexp, rate = 1 ) # Plot values plot(y_pexp) |
Output :
qexp() Function
qexp()
function gives the possibility, we can use the qexp function to return the corresponding values of the quantile function.
Syntax:
qexp(x_qexp, rate)
Example:
# R program to illustrate # exponential distribution # Specify x-values x_qexp < - seq( 0 , 1 , by = 0.2 ) # Apply qexp() function y_qexp < - qexp(x_qexp, rate = 1 ) # Plot values plot(y_qexp) |
Output:
rexp() Function
rexp()
function is used to simulate a set of random numbers drawn from the exponential distribution.
Syntax:
rexp(N, rate )
Example:
# R program to illustrate # exponential distribution # Set seed for reproducibility set .seed( 500 ) # Specify size N < - 100 # Draw exp distributed values y_rexp < - rexp(N, rate = 1 ) # Plot exp density hist(y_rexp, breaks = 50 , main = "") |
Output :
Please Login to comment...